Skip to main content

Advertisement

Log in

Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

As the number of nanoparticle-based products increase in the marketplace, there will be increased potential for human exposures to these engineered materials throughout the product life cycle. We currently lack sufficient data to understand or predict the inherent nanomaterial characteristics that drive nanomaterial–biological interactions and responses. In this study, we utilized the embryonic zebrafish (Danio rerio) model to investigate the importance of nanoparticle (NP) surface functionalization, in particular as it pertains to nanoparticle stability, on in vivo biological responses. This is a comparative study where two lead sulfide nanoparticles (PbS-NPs) with nearly identical core sizes, but functionalized with either sodium 3-mercaptopropanesulfonate (MT) or sodium 2,3-dimercaptopropanesulfonate (DT) ligand, were used. Developmental exposures and assessments revealed differential biological responses to these engineered nanoparticles. Exposures beginning at 6 h post fertilization (hpf) to MT-functionalized nanoparticles (PbS-MT) led to 100% mortality by 120 hpf while exposure to DT-functionalized nanoparticles (PbS-DT) produced less than a 5% incident in mortality at the same concentration. Exposure to the MT and DT ligands themselves did not produce adverse developmental effects when not coupled to the NP core. Following exposure, we confirmed that the embryos took up both PbS-MT and PbS-DT material using inductively coupled plasma-mass spectrometry (ICP-MS). The stability of the nanoparticles in the aqueous solution was also characterized. The nanoparticles decompose and precipitate upon exposure to air. Soluble lead ions were observed following nanoparticle precipitation and in greater concentration for the PbS-MT sample compared to the PbS-DT sample. These studies demonstrate that in vivo assessments can be effectively used to characterize the role of NP surface functionalization in predicting biological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances, Disease Registry (ATSDR) (2007) Toxicological profile for lead. US Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Aldana J, Wang Y, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophillic thiols. J Am Chem Soc 123(36):8844–8850

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Korf I et al (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10(9):1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Bharali DJ, Khalil M et al (2009) Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 4(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • De Gennardo LD (1978) The effects of lead nitrate on the central nervous system of the chick embryo I. Observations of light and electron microscopy. Growth 42(2):141–155

    Google Scholar 

  • den Hertog J (2005) Chemical genetics: drug screens in zebrafish. Biosci Rep 25(5–6):289–297

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  PubMed  CAS  Google Scholar 

  • Dodd A, Curtis PM et al (2000) Zebrafish: bridging the gap between development and disease. Hum Mol Genet 9(16):2443–2449

    Article  PubMed  CAS  Google Scholar 

  • Furgeson D, Bar-llan O et al (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small X:1–14

    Google Scholar 

  • Goldsmith M-M, Leary J (2009) Nanobiosystems. WIREs Nanomed Nanobiotechnol 1:553–567

    Article  Google Scholar 

  • Guo L, Bussche AV et al (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4(6):721–727

    Article  PubMed  CAS  Google Scholar 

  • Haendel MA, Tilton F et al (2004) Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicol Sci 81(2):390–400

    Article  PubMed  CAS  Google Scholar 

  • Hall JB, Dobrovolskaia MA et al (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6):789–803

    Article  CAS  Google Scholar 

  • Hill AJ, Teraoka H et al (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19

    Article  PubMed  CAS  Google Scholar 

  • Hinds S, Myrskog S, Levina L, Koleilat G, Yang J, Kelley SO, Sargent EH (2007) NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J Am Chem Soc 129(23):7218–7219

    Article  PubMed  CAS  Google Scholar 

  • Hoshino A, Fujioka K et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Article  CAS  Google Scholar 

  • Hyun B, Chen H, Rey DA, Wise FW, Batt CA (2007) Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. J Phys Chem B 111(20):5726–5730

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  PubMed  CAS  Google Scholar 

  • Kirchner C, Liedl T et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  PubMed  CAS  Google Scholar 

  • Koleilat GI, Levina L et al (2008) Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2(5):833–840

    Article  PubMed  CAS  Google Scholar 

  • Konstantatos G, Huang C, Levina L, Lu Z, Sargent EH (2005) Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv Funct Mater 15:1865–1869

    Article  CAS  Google Scholar 

  • Konstantatos G, Howard I et al (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442(7099):180–183

    Article  PubMed  CAS  Google Scholar 

  • Kotov NA, Winter JO et al (2009) Nanomaterials for neural interfaces. Adv Mater 21(40):3970–4004

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V et al (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  PubMed  CAS  Google Scholar 

  • Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Aruguete DM, Murayama M, Hochella MF Jr (2009) Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS). Environ Sci Technol 43(21):8178–8183

    Article  PubMed  CAS  Google Scholar 

  • Long TC, Saleh N et al (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352

    Article  PubMed  CAS  Google Scholar 

  • McDonald SA, Konstantatos G et al (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4(2):138–142

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Chen Z et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175(1–3):102–110

    Article  PubMed  CAS  Google Scholar 

  • Minchin RF, Martin DJ (2010) Nanoparticles for molecular imaging—an overview. Endocrinology 151(2):474–481

    Article  PubMed  CAS  Google Scholar 

  • Moody IS, Stonas AR et al (2008) PbS nanocrystals functionalized with a short-chain, ionic, dithiol ligand. J Phys Chem C 112(49):19383–19389

    Article  CAS  Google Scholar 

  • Newman MD, Stotland M et al (2009) The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol 61(4):685–692

    Article  PubMed  CAS  Google Scholar 

  • Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8(1):100–106

    PubMed  CAS  Google Scholar 

  • Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6(2):218–223

    PubMed  CAS  Google Scholar 

  • Samia ACS, Chen XB et al (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Sharma A, Kansal L (2010) The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food Chem Toxic 48(3):928–936

    Article  CAS  Google Scholar 

  • Teraoka H, Dong W et al (2003) Zebrafish as a novel experimental model for developmental toxicology. Congenit Anom (Kyoto) 43(2):123–132

    Article  CAS  Google Scholar 

  • Ton C, Lin Y et al (2006) Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res A Clin Mol Teratol 76(7):553–567

    Article  PubMed  CAS  Google Scholar 

  • Usenko CY, Harper SL et al (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon N Y 45(9):1891–1898

    Article  PubMed  CAS  Google Scholar 

  • White D, Cory-Slechta A, Gilbert E, Tiffany-Castiglioni E, Zawai H, Virgolini M, Rossi-George A, Lasley M et al (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Wise JP Sr, Goodale BC et al (2009) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41

    Article  PubMed  Google Scholar 

  • Yang LX, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Muller F, Strahle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28(2):245–253

    Article  PubMed  CAS  Google Scholar 

  • Zelikoff JT, Li JH, Hartwig A, Wang XW, Costa M, Rossman TG (1988) Genetic toxicology of lead compounds. Carcinogenesis 9(10):1727–1732

    Article  PubMed  CAS  Google Scholar 

  • Zhang TT, Stilwell JL et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6(4):800–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Sinnhuber Aquatic Research Laboratory for the embryos and Cari Buchner for her technical assistance. These studies were partially supported by National Institute of Environmental Health Sciences (NIEHS) P3000210, the Air Force Research Laboratory (AFRL) under agreement number FA8650-05-1-5041, Environmental Protection Agency (EPA) RD-833320, and the National Science Foundation (NSF) IGERT Fellowship program under Grant No. DGE-0549503. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NIEHS, AFRL, EPA, NSF, or the US Government. Further support was provided by the W.M Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Tanguay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truong, L., Moody, I.S., Stankus, D.P. et al. Differential stability of lead sulfide nanoparticles influences biological responses in embryonic zebrafish. Arch Toxicol 85, 787–798 (2011). https://doi.org/10.1007/s00204-010-0627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0627-4

Keywords

Navigation