Skip to main content
Log in

Ticlopidine-induced hepatotoxicity in a GSH-depleted rat model

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

We investigated hepatotoxicity induced by ticlopidine (TIC) in glutathione (GSH)-depleted rats by pre-treatment of a well-known GSH synthesis inhibitor, l-buthionine-S,R-sulfoxinine (BSO). Although sole administration of either TIC or BSO showed no signs of hepatotoxicity, combined administration of TIC with BSO induced hepatotoxicity, which was characterized by centrilobular necrosis of the hepatocytes and an elevation of plasma alanine aminotransferase activity. Administration of radio-labeled TIC in combination with BSO resulted in significantly higher covalent binding to rat liver proteins than that observed after sole dosing of radio-labeled TIC. Pre-treatment of 1-Aminobenzotriazole, a non-specific inhibitor of P450s, completely suppressed both hepatotoxicity and the increased hepatic covalent binding caused by TIC co-treatment with BSO. The results obtained in this animal model suggest that GSH depletion and covalent binding may be involved in hepatotoxicity induced by TIC. These observations may help to understand the risk factors and the mechanism of hepatotoxicity of TIC in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Davis SR, Quinlivan EP, Stacpoole PW, Gregory JF III (2006) Plasma glutathione and cystathionine concentrations are elevated but cysteine flux is unchanged by dietary vitamin B-6 restriction in young men and women. J Nutr 136:373–378

    PubMed  CAS  Google Scholar 

  • Drew R, Miners JO (1984) The effects of buthionine sulfoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem Pharmacolo 33:2989–2994

    Article  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  • Ha-Duong NT, Dijols S, Macherey AC, Goldstein JA, Dansette PM, Mansuy D (2001) Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19. Biochemistry 40:12112–12122

    Article  PubMed  CAS  Google Scholar 

  • Hernanz A, Fernández-Vivancos E, Montiel C, Vazquez JJ, Arnalich F (2000) Changes in the intracellular homocysteine and glutathione content associated with aging. Life Sci 67:1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, Shimizu S, Masumoto H, Okutani Y (2008) Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 8:29–33

    Article  PubMed  CAS  Google Scholar 

  • Ip C (1984) Comparative effects of antioxidants on enzymes involved in glutathione metabolism. Life Sci 34:2501–2506

    Article  PubMed  CAS  Google Scholar 

  • Jacobson AK (2004) Platelet ADP receptor antagonists: ticlopidine and clopidogrel. Best Pract Res Clin Haematol 17:55–64

    Article  PubMed  CAS  Google Scholar 

  • Lauterburg BH, Velez ME (1988) Glutathione deficiency in alcoholics: risk factor for paracetamol hepatotoxicity. Gut 2:1153–1157

    Article  Google Scholar 

  • Li AP (2002) A review of the common properties of drugs with idiosyncratic hepatotoxicity and the “multiple determinant hypothesis” for the manifestation of idiosyncratic drug toxicity. Chem Biol Interact 142:7–23

    Article  PubMed  CAS  Google Scholar 

  • Mataix R, Ojeda E, Perez MC, Jimenez S (1992) Ticlopidine and severe aplastic anaemia. Br J Haematol 80:125–126

    Article  PubMed  CAS  Google Scholar 

  • Micke P, Beeh KM, Buhl R (2002) Effects of long-term supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. Eur J Nutr 4:12–18

    Article  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) Acetaminophene-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217

    PubMed  CAS  Google Scholar 

  • Mizushima M, Iwata N, Fujimoto TT, Ishikawa K, Fujimura K (2005) Patient characteristics in ticlopidine hydrochloride-induced liver injury: Case-control study. Hepatol Res 33:234–240

    Article  PubMed  CAS  Google Scholar 

  • Mizutani T, Nomura H, Nakanishi K, Fujita S (1987) Hepatotoxicity of butylated hydroxytoluene and its analogs in mice depleted of hepatic glutathione. Toxicol Appl Pharmacol 87:166–176

    Article  PubMed  CAS  Google Scholar 

  • Mizutani T, Satoh K, Nomura H, Nakanishi K (1991) Hepatotoxicity of eugenol in mice depleted of glutathione by treatment with DL-buthionine sulfoximine. Res Commun Chem Pathol Pharmacol 71:219–230

    PubMed  CAS  Google Scholar 

  • Mizutani T, Irie Y, Nakanishi K (1994a) Styrene-induced hepatotoxicity in mice depleted of glutahione. Res Commun Mol Pathol Pharmacol 86:361–374

    PubMed  CAS  Google Scholar 

  • Mizutani T, Nakahori Y, Yamamoto K (1994b) p-Dichlorobenzene-induced hepatotoxicity in mice depleted of glutathione treated with buthionine sulfoximine. Toxicology 94:57–67

    Article  PubMed  CAS  Google Scholar 

  • Mizutani T, Murakami M, Shirai M, Tanaka M, Nakanishi K (1999) Metabolism-dependent hepatotoxicity of Methimazole in mice depleted of glutathione. J Appl Toxicol 19:193–198

    Article  PubMed  CAS  Google Scholar 

  • Mugford CA, Mortillo M, Mico BA, Tarloff JB (1992) 1-Aminobenzotriazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague-Dawley rats. Fundam Appl Toxicol 19:43–49

    Article  PubMed  CAS  Google Scholar 

  • Muszkat M, Shapira MY, Sviri S, Linton DM, Caraco Y (1998) Ticlopidine-induced thrombotic thrombocytopenic purpura. Pharmacotherapy 18:1352–1355

    PubMed  CAS  Google Scholar 

  • Nakamura S, Kugiyama K, Sugiyama S, Miyamoto S, Koide S, Fukushima H, Honda O, Yoshimura M, Ogawa H (2002) Polymorphism in the 5′-flanking region of human glutamate-cysteine ligase modifier subunit gene is associated with myocardial infarction. Circulation 105:2968–2973

    Article  PubMed  CAS  Google Scholar 

  • Nishiya T, Mori K, Hattori C, Kai K, Kataoka H, Masubuchi N, Jindo T, Manabe S (2008) The crucial protective role of glutathione against tienilic acid hepatotoxicity in rats. Toxicol Appl Pharmacol 232:280–291

    Article  PubMed  CAS  Google Scholar 

  • Nishiya Y, Hagihara K, Ito T, Tajima M, Miura S, Kurihara A, Farid NA, Ikeda T (2009) Mechanism-based inhibition of human cytochrome P450 2B6 by ticlopidine, clopidogrel, and the thiolactone metabolite of prasugrel. Drug Metab Dispos 37:589–593

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Kurohara K, Yoshihara M, Shimamoto Y, Yamaguchi M (1991) Agranulocytosis caused by ticlopidine and its mechanism. Am J Hematol 37:239–242

    Article  PubMed  CAS  Google Scholar 

  • Panak E, Maffrand JP, Picard-Fraire C, Vallée E, Blanchard J, Roncucci R (1983) Ticlopidine: a promise for the prevention and treatment of thrombosis and its complications. Haemostasis 13(Suppl 1):1–54

    PubMed  Google Scholar 

  • Pizarro AE, Andrade RJ, García-Cortés M, Lucena MI, Pérez-Moreno JM, Puertas M, Sánchez-Martínez H, Montero JL, Durán JA, Jiménez M, Ruiz-Montero A, Soto-Conesa MJ, Rodrigo L, de Francisco R, Alcántara R, Camargo R (2001) Acute hepatitis due to ticlopidine. A report of 12 cases and review of the literature. Rev Neurol 33:1014–1020

    PubMed  CAS  Google Scholar 

  • Quinn MJ, Fitzgerald DJ (1999) Ticlopidine and clopidogrel. Circulation 100:1667–1672

    PubMed  CAS  Google Scholar 

  • Richter T, Mürdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM (2004) Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther 308:189–197

    Article  PubMed  CAS  Google Scholar 

  • Ruan Q, Zhu M (2010) Investigation of Bioactivation of Ticlopidine Using Linear Ion Trap/Orbitrap Mass Spectrometry and an Improved Mass Defect Filtering Technique. Chem Res Toxicol 23:909–917

    Article  PubMed  CAS  Google Scholar 

  • Savi P, Herbert JM (2005) Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31:174–183

    Article  PubMed  CAS  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Atsumi R, Itokawa K, Iwasaki M, Aoki T, Ono C, Izumi T, Sudo K, Okazaki O (2009a) Metabolism-dependent hepatotoxicity of amodiaquine in glutathione-depleted mice. Arch Toxicol 83:701–707

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Atsumi R, Nakazawa T, Fujimaki Y, Sudo K, Okazaki O (2009b) Metabolism of ticlopidine in rats: Identification of the main biliary metabolite as a GSH conjugate of S-oxide. Drug Metab Dispos 37:1904–1915

    Article  PubMed  CAS  Google Scholar 

  • Staal FJ, Ela SW, Roederer M, Anderson MT, Herzenberg LA (1992) Glutathione deficiency and human immunodeficiency virus infection. Lancet 339:909–912

    Article  PubMed  CAS  Google Scholar 

  • Steinhubl SR, Tan WA, Foody JM, Topol EJ (1999) Incidence and clinical course of thrombotic thrombocytopenic purpura due to ticlopidine following coronary stenting. EPISTENT Investigators. Evaluation of Platelet IIb/IIIa Inhibitor for Stenting. JAMA 281:806–810

    Article  PubMed  CAS  Google Scholar 

  • Takikawa H (2005) Lessons from ticlopidine-induced liver injury. Hepatol Res 33:193–194

    Article  PubMed  Google Scholar 

  • Tsai MH, Tsai SL, Chen TC, Liaw YF (2000) Ticlopidine-induced cholestatic hepatitis with anti-nuclear antibody in serum. J Formos Med Assoc 99:866–869

    PubMed  CAS  Google Scholar 

  • Usui T, Mise M, Hashizume T, Yabuki M, Komuro S (2009) Evaluation of the potential for drug-induced liver injury based on in vitro covalent binding to human liver proteins. Drug Metab Dispos 37:2383–2392

    Article  PubMed  CAS  Google Scholar 

  • van Zanten SV, McCormic CW (1996) Antinuclear antibody-positive ticlopidine-induced hepatitis. Can J Gastroenterol 10:231–232

    Google Scholar 

  • Watanabe T, Sagisaka H, Arakawa S, Shibaya Y, Watanabe M, Igarashi I, Tanaka K, Totsuka S, Takasaki W, Manabe S (2003) A novel model of continuous depletion of glutathione in mice treated with l-buthionine (S, R)-sulfoximine. J Toxicol Science 28:455–463

    Article  CAS  Google Scholar 

  • Yoneda K, Iwamura R, Kishi H, Mizukami Y, Mogami K, Kobayashi S (2004) Identification of the active metabolite of ticlopidine from rat in vitro metabolites. Br J Pharmacol 142:551–557

    Article  PubMed  CAS  Google Scholar 

  • Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41:89–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Minoru Inoue and Yutaka Iigo for their excellent assistance with the histopathological evaluations. We are also very grateful to Takatoshi Nishiya for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, S., Atsumi, R., Nakazawa, T. et al. Ticlopidine-induced hepatotoxicity in a GSH-depleted rat model. Arch Toxicol 85, 347–353 (2011). https://doi.org/10.1007/s00204-010-0594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0594-9

Keywords

Navigation