Skip to main content

Advertisement

Log in

Effects of extracellular acidic–alkaline stresses on trigeminal ganglion neurons in the mouse embryo in vivo

  • Reproductive Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acidic–alkaline stresses caused by ischemia and hypoglycemia induce neuronal cell death resulting from intracellular pH disturbance. The effects of acidic–alkaline disturbance on the trigeminal ganglion (TG) neurons of the embryonic mouse were investigated by caspase-3-immunohistochemistry and Nissl staining. TG neurons exhibited apoptosis in 3.08 ± 0.55% of neurons in intact embryos at day 16. Intraperitoneal injection of alkaline solution (pH 8.97; 0.005–0.1 M K2HPO4 or 0.01–0.04 M KOH) into the embryo at embryonic day 15 significantly increased the number of apoptotic neurons in the TG at embryonic day 16 with dependence on concentration (3.40–6.05 and 2.93–5.55%, respectively). On the other hand, acidic solutions (pH 4.4; 0.01–0.2 M KH2PO4) slightly, but not significantly, increased the number of apoptotic cells (3.64–5.15%, without dependence on concentration). Neutral solutions (pH 7.4; 0.01–0.2 M potassium phosphate buffer) had no effect on neuronal survival in the TG (2.89–3.48%). The results indicated that alkaline stress significantly increased apoptosis in the developing nervous system, but acidic stress did not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Auer RN (2004) Hypoglycemic brain damage. Metab Brain Dis 19:169–175

    Article  PubMed  Google Scholar 

  • Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Bassanini S, Granata T, Setola V, Giavazzi A, Pagliardini S (2003) The genesis of epileptogenic cerebral heterotopia: clues from experimental models. Epileptic Disord 5(Suppl 2):S51–S58

    PubMed  Google Scholar 

  • Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442

    Article  CAS  PubMed  Google Scholar 

  • Bouyer P, Bradley SR, Zhao J, Wang W, Richerson GB, Boron WF (2004) Effect of extracellular acid-base disturbances on the intracellular pH of neurones cultured from rat medullary raphe or hippocampus. J Physiol 559(Pt 1):85–101

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo E, Reinach B, Caputi A, Cattabeni F, Di Luca M (1995) Selective in vitro blockade of neuroepithelial cells proliferation by methylazoxymethanol, a molecule capable of inducing long lasting functional impairments. J Neurosci Res 41:640–647

    Article  CAS  PubMed  Google Scholar 

  • Colacitti C, Sancini G, DeBiasi S, Franceschetti S, Caputi A, Frassoni C, Cattabeni F, Avanzini G, Spreafico R, Di Luca M, Battaglia G (1999) Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses. J Neuropathol Exp Neurol 58:92–106

    Article  CAS  PubMed  Google Scholar 

  • Davies AM (1987) Molecular and cellular aspects of patterning sensory neurone connections in the vertebrate nervous system. Development 101:185–208

    CAS  PubMed  Google Scholar 

  • Ding D, Moskowitz SI, Li R, Lee SB, Esteban M, Tomaselli K, Chan J, Bergold PJ (2000) Acidosis induces necrosis and apoptosis of cultured hippocampal neurons. Exp Neurol 162:1–12

    Article  CAS  PubMed  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  CAS  PubMed  Google Scholar 

  • Franco-Cea A, Valencia A, Sánchez-Armass S, Domínguez G, Morán J (2004) Role of ionic fluxes in the apoptotic cell death of cultured cerebellar granule neurons. Neurochem Res 29:227–238

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Ishizaki Y, Yanagisawa A, Morita I, Murota SI, Ishikawa K (1999) Possible involvement of a chloride-bicarbonate exchanger in apoptosis of endothelial cells and cardiomyocytes. Cell Biol Int 23:241–249

    Article  CAS  PubMed  Google Scholar 

  • Giffard RG, Weiss JH, Choi DW (1992) Extracellular alkalinity exacerbates injury of cultured cortical neurons. Stroke 23:1817–1821

    CAS  PubMed  Google Scholar 

  • Hartley Z, Dubinsky JM (1993) Changes in intracellular pH associated with glutamate excitotoxicity. J Neurosci 13:4690–4699

    CAS  PubMed  Google Scholar 

  • Herberth B, Pataki A, Jelitai M, Schlett K, Deák F, Spät A, Madarász E (2002) Changes of KCl sensitivity of proliferating neural progenitors during in vitro neurogenesis. J Neurosci Res 67:574–582

    Article  CAS  PubMed  Google Scholar 

  • Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    Article  CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Mabe H, Blomqvist P, Siesjö BK (1983) Intracellular pH in the brain following transient ischemia. J Cereb Blood Flow Metab 3:109–114

    CAS  PubMed  Google Scholar 

  • Majima HJ, Oberley TD, Furukawa K, Mattson MP, Yen HC, Szweda LI, St Clair DK (1998) Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 273:8217–8224

    Article  CAS  PubMed  Google Scholar 

  • Mathot M, Maton P, Henrion E, François-Adant A, Marguglio A, Gaillez S, Collard L, Langhendries JP (2006) Pseudo-Bartter syndrome in a pregnant mother and her fetus. Pediatr Nephrol 21:1037–1040

    Article  PubMed  Google Scholar 

  • Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    Article  CAS  PubMed  Google Scholar 

  • Ostermann ME, Girgis-Hanna Y, Nelson SR, Eastwood JB (2003) Metabolic alkalosis in patients with renal failure. Nephrol Dial Transpl 18:2442–2448

    Article  Google Scholar 

  • Pérez-Sala D, Collado-Escobar D, Mollinedo F (1995) Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem 270:6235–6242

    Article  PubMed  Google Scholar 

  • Rozance PJ, Crispo MM, Barry JS, O’Meara MC, Frost MS, Hansen KC, Hay WW Jr, Brown LD (2009) Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation. Am J Physiol Endocrinol Metab 297:E638–E646

    Article  CAS  PubMed  Google Scholar 

  • Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, Katoh-Semba R, Nakajima M, Sekine Y, Tanaka M, Nakamura K, Iwata Y, Tsuchiya KJ, Mori N, Detera-Wadleigh SD, Ichikawa H, Itohara S, Yoshikawa T, Furuichi T (2007) Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest 117:931–943

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Ichikawa H, Nakagawa H, Kiyomiya K, Matsuo S (2007) Effect of BDNF deletion on the formation of Ruffini endings in vibrissa follicles and the survival of their mechanoreceptive neurons in trigeminal ganglion. Brain Res 1154:95–104

    Article  CAS  PubMed  Google Scholar 

  • Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

    Article  CAS  PubMed  Google Scholar 

  • Trubiani G, Al Chawaf A, Belsham DD, Barsyte-Lovejoy D, Lovejoy DA (2007) Teneurin carboxy (C)-terminal associated peptide-1 inhibits alkalosis-associated necrotic neuronal death by stimulating superoxide dismutase and catalase activity in immortalized mouse hypothalamic cells. Brain Res 1176:27–36

    Article  CAS  PubMed  Google Scholar 

  • Tsao N, Lei HY (1996) Activation of the Na(+)/H(+) antiporter, Na+/HCO3(−)/CO3(2−) cotransporter, or Cl(−)/HCO3(−) exchanger in spontaneous thymocyte apoptosis. J Immunol 157:1107–1116

    CAS  PubMed  Google Scholar 

  • Vincent AM, TenBroeke M, Maiese K (1999a) Metabotropic glutamate receptors prevent programmed cell death through the modulation of neuronal endonuclease activity and intracellular pH. Exp Neurol 155:79–94

    Article  CAS  PubMed  Google Scholar 

  • Vincent AM, TenBroeke M, Maiese K (1999b) Neuronal intracellular pH directly mediates nitric oxide-induced programmed cell death. J Neurobiol 40:171–184

    Article  CAS  PubMed  Google Scholar 

  • Voyame J, Terrier P, Guignard JP, Cachat F (1999) Transient hypokalemic metabolic alkalosis in a newborn mimicking Bartter’s syndrome. J Pediatr 134:794

    CAS  PubMed  Google Scholar 

  • Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saburo Matsuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, S., Nakagawa, H., Ichikawa, H. et al. Effects of extracellular acidic–alkaline stresses on trigeminal ganglion neurons in the mouse embryo in vivo. Arch Toxicol 85, 149–154 (2011). https://doi.org/10.1007/s00204-010-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0556-2

Keywords

Navigation