Skip to main content
Log in

Induction or inhibition of cytochrome P450 2E1 modifies the acute toxicity of acrylonitrile in rats: biochemical evidence

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The present study was designed to examine the effects of the inhibition or induction of CYP2E1 activity on acute acrylonitrile (AN) toxicity in rats. Increased or decreased hepatic CYP2E1 activity was achieved by pretreatment with acetone or trans-1,2-dichloroethylene (DCE), respectively. AN (50 mg/kg) was administered by intraperitoneal injection. Onset of convulsions and death were observed in rats with increased CYP2E1 activity, whereas convulsions and death did not appear in rats within 1 h after treatment with AN alone. Convulsions occurred in all AN-treated animals with increased CYP2E1 activity at approximately 18 min. The levels of cyanide (CN), a terminal metabolite of AN, were significantly increased in the brains and livers of the AN-treated rats with increased CYP2E1 activity, compared with the levels in rats treated with AN alone, DCE + AN or acetone + DCE + AN. The cytochrome c oxidase (CcOx) activities in the brains and livers of the rats treated with AN or AN + acetone were significantly lower than those in the normal control rats and the rats treated with DCE, whereas the CcOx activities in the brains and livers of rats with decreased CYP2E1 activity were significantly higher than those in AN-treated rats. Brain lipid peroxidation was enhanced, and the antioxidant capacity was significantly compromised in rats with decreased CYP2E1 activity compared with rats with normal or increased CYP2E1 activity. Therefore, inhibition of CYP2E1 and simultaneous antioxidant therapy should be considered as supplementary therapeutic interventions in acute AN intoxication cases with higher CYP2E1 activity, thus a longer window of opportunity would be got to offer further emergency medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardelt BK, Borowitz JL, Isom GE (1989) Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology 56:147–154

    Article  CAS  PubMed  Google Scholar 

  • Ardelt BK, Borowitz JL, Maduh EU, Swain SL, Isom GE (1994) Cyanide-induced lipid peroxidation in different organs: subcellular distribution and hydroperoxide generation in neuronal cells. Toxicology 89:127–137

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne B, Bright JE, Williams P (1974) The post-mortem rate of transformation of cyanide. Forensic Sci 3:71–76

    Article  CAS  PubMed  Google Scholar 

  • Benz FW, Nerland DE (1997) Effect of cytochrome P450 inhibitors and anticonvulsants on the acute toxicity of acrylonitrile. Arch Toxicol 79:610–614

    Article  Google Scholar 

  • Benz FW, Nerland DE, Pierce WM, Babiuk C (1990) Acute acrylonitrile toxicity: studies on the mechanism of the antidotal effect of D- and L-cysteine and their N-acetyl derivatives in the rat. Toxicol Appl Pharmacol 102:142–150

    Article  CAS  PubMed  Google Scholar 

  • Benz FW, Nerland DE, Corbett D, Li J (1997) Biological markers of acute acrylonitrile intoxication in rats as a function of dose and time. Fundam Appl Toxicol 36:141–148

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Satpute RM, Hariharakrishnan J, Tripathi H, Saxena PB (2009) Acute toxicity of some synthetic cyanogens in rats and their response to oral treatment with alpha-ketoglutarate. Food Chem Toxicol 47:2314–2320

    Article  CAS  PubMed  Google Scholar 

  • Boadas-Vaello P, Jover E, Diez-Padrisa N, Bayona JM, Llorens J (2007) Differential role of CYP2E1-mediated metabolism in the lethal and vestibulotoxic effects of cis-crotononitrile in the mouse. Toxicol Appl Pharmacol 225:310–317

    Article  CAS  PubMed  Google Scholar 

  • Boadas-Vaello P, Jover E, Saldaña-Ruíz S, Soler-Martín C, Chabbert C, Bayona JM, Llorens J (2009) Allylnitrile metabolism by CYP2E1 and other CYPs leads to distinct lethal and vestibulotoxic effects in the mouse. Toxicol Sci 107:461–472

    Article  CAS  PubMed  Google Scholar 

  • Bolt HM, Roos PH, Thier R (2003) The cytochrome P-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int Arch Occup Environ Health 76:174–185

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brady JF, Ishizaki H, Fukuto JM, Lin MC, Fadel A, Gapac JM, Yang CS (1991) Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites. Chem Res Toxicol 4:642–647

    Article  CAS  PubMed  Google Scholar 

  • Buchter A, Peter H (1984) Clinical toxicology of acrylonitrile. G Ital Med Lav 6:83–86

    CAS  PubMed  Google Scholar 

  • Chang TK, Gonzales FJ, Waxman DJ (1994) Evaluation of triacetyloleandomycin, alpha-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch Biochem Biophys 311:437–442

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen C, Jin S, Zhou L (1999) The diagnosis and treatment of acute acrylonitrile poisoning: a clinical study of 144 cases. J Occup Health 41:172–176

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Farooqui MY, Ybarra B, Piper J, Tamez A (1995) Effect of dosing vehicle on the toxicity and metabolism of unsaturated aliphatic nitriles. J Appl Toxicol 15:411–420

    Article  CAS  PubMed  Google Scholar 

  • Felten RK, DeNicola DB, Carlson GP (1998) Minimal effects of acrylonitrile on pulmonary and hepatic cell injury enzymes in rats with induced cytochrome P450. Drug Chem Toxicol 21:181–194

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32:S22–S27

    Article  CAS  PubMed  Google Scholar 

  • Freundt KJ, Liebaldt GP, Lieberwirth E (1977) Toxicity studies on trans-1, 2-dichloroethylene. Toxicology 7:141–153

    Article  CAS  PubMed  Google Scholar 

  • Ghanayem BI, Farooqui MY, Elshabrawy O, Mumtaz MM, Ahmed AE (1991) Assessment of the acute acrylonitrile-induced neurotoxicity in rats. Neurotoxicol Teratol 13:499–502

    Article  CAS  PubMed  Google Scholar 

  • Góth L (1991) A simple method for determination of serum catalase and revision of reference range. Clin Chim Acta 196:143–152

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Oxidative stress: Adaptation, damage, repair and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York, pp 246–350

    Google Scholar 

  • Hipólito L, Sánchez-Catalán MJ, Polache A, Granero L (2009) Induction of brain CYP2E1 changes the effects of ethanol on dopamine release in nucleus accumbens shell. Drug Alcohol Depend 100:83–90

    Article  PubMed  Google Scholar 

  • IARC (1999) Acrylonitrile. IARC Monogr Eval Carcinog Risks Hum 71:43–108

    Google Scholar 

  • Ikegaya H, Iwase H, Hatanaka K, Sakurada K, Matsuda Y, Kobayashi M, Takatori T (2000) Postmortem changes in cytochrome c oxidase activity in various organs of the rat and in human heart. Forensic Sci Int 108:181–186

    Article  CAS  PubMed  Google Scholar 

  • Ikegaya H, Iwase H, Hatanaka K, Sakurada K, Yoshida K, Takatori T (2001) Diagnosis of cyanide intoxication by measurement of cytochrome c oxidase activity. Toxicol Lett 119:117–123

    Article  CAS  PubMed  Google Scholar 

  • IPCS (International Programme on Chemical Safety) (2002) Acrylonitrile. Concise International Chemical Assessment Document 39. WHO, Geneva

  • Irifune M, Kikuchi N, Saida T, Takarada T, Shimizu Y, Endo C, Morita K, Dohi T, Sato T, Kawahara M (2007) Riluzole, a glutamate release inhibitor, induces loss of righting reflex, antinociception, and immobility in response to noxious stimulation in mice. Anesth Analg 104:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Xu Y, Klaunig JE (1998) Induction of oxidative stress in rat brain by acrylonitrile (ACN). Toxicol Sci 46:333–341

    Article  CAS  PubMed  Google Scholar 

  • Johansson I, Ingelman-Sundberg M (1988) Benzene metabolism by ethanol-, acetone-, and benzene-inducible cytochrome P-450 (IIE1) in rat and rabbit liver microsomes. Cancer Res 48:5387–5390

    CAS  PubMed  Google Scholar 

  • Kato S, Shields PG, Caporaso NE, Sugimura H, Trivers GE, Tucker MA, Trump BF, Weston A, Harris CC (1994) Analysis of cytochrome P450 2E1 genetic polymorphisms in relation to human lung cancer. Cancer Epidemiol Biomarkers Prev 3:515–518

    CAS  PubMed  Google Scholar 

  • Kedderis GL, Batra R, Koop DR (1993) Epoxidation of acrylonitrile by rat and human cytochromes P450. Chem Res Toxicol 6:866–871

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Williams DE, Schuetz EG, Guzelian PS, Novak RF (1988) Pyridine induction of cytochrome P-450 in the rat: role of P-450j (alcohol-inducible form) in pyridine N-oxidation. J Pharmacol Exp Ther 246:1175–1182

    CAS  PubMed  Google Scholar 

  • Kim RB, Yamazaki H, Chiba K, O’Shea D, Mimura M, Guengerich FP, Ishizaki T, Shimada T, Wilkinson GR (1996) In vivo and in vitro characterization of CYP2E1 activity in Japanese and Caucasians. J Pharmacol Exp Ther 279:4–11

    CAS  PubMed  Google Scholar 

  • Koop DR (1986) Hydroxylation of p-nitrophenol by rabbit ethanol-inducible cytochrome P-450 isozyme 3a. Mol Pharmacol 29:399–404

    CAS  PubMed  Google Scholar 

  • Lickly TD, Markhama DA, Raineya ML (1991) The migration of acrylonitrile from acrylonitrile/butadiene/styrene polymers into food-simulating liquids. Food Chem Toxicol 29:25–29

    Article  CAS  PubMed  Google Scholar 

  • Lieber CS (1997) Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 77:517–544

    CAS  PubMed  Google Scholar 

  • Lieber CS (2004) CYP2E1: from ASH to NASH. Hepatol Res 28:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lilly PD, Thornton-Manning JR, Gargas ML, Clewell HJ, Andersen ME (1998) Kinetic characterization of CYP2E1 inhibition in vivo and in vitro by the chloroethylenes. Arch Toxicol 72:609–621

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb JC, Teuschler LK, Swartout J, Popken D, Cox T, Kedderis GL (2003) The impact of cytochrome P450 2E1-dependent metabolic variance on a risk-relevant pharmacokinetic outcome in humans. Risk Anal 23:1221–1238

    Article  PubMed  Google Scholar 

  • Mathews JM, Etheridge AS, Raymer JH, Black SR, Pulliam DW Jr, Bucher JR (1998) Selective inhibition of cytochrome P450 2E1 in vivo and in vitro with trans-1, 2-dichloroethylene. Chem Res Toxicol 11:778–785

    Article  CAS  PubMed  Google Scholar 

  • Müller U, Krieglstein J (1995) Inhibitors of lipid peroxidation protect cultured neurons against cyanide-induced injury. Brain Res 678:265–268

    Article  PubMed  Google Scholar 

  • Nelson L (2006) Acute cyanide toxicity: mechanisms and manifestations. J Emerg Nurs 32:S8–S11

    Article  PubMed  Google Scholar 

  • Nerland DE, Benz FW, Babiuk C (1989) Effects of cysteine isomers and derivatives on acute acrylonitrile toxicity. Drug Metab Rev 20:233–246

    Article  CAS  PubMed  Google Scholar 

  • Park KS, Sohn DH, Veech RL, Song BJ (1993) Translational activation of ethanol-inducible cytochrome P450 (CYP2E1) by isoniazid. Eur J Pharmacol 248:7–14

    CAS  PubMed  Google Scholar 

  • Pu X, Kamendulis LM, Klaunig JE (2006) Acrylonitrile-induced oxidative DNA damage in rat astrocytes. Environ Mol Mutagen 47:631–638

    Article  CAS  PubMed  Google Scholar 

  • Raner GM, Cornelious S, Moulick K, Wang Y, Mortenson A, Cech NB (2007) Effects of herbal products and their constituents on human cytochrome P4502E1 activity. Food Chem Toxicol 45:2359–2365

    Article  CAS  PubMed  Google Scholar 

  • Reinke LA, Moyer MJ (1985) p-Nitrophenol hydroxylation: a microsomal oxidation which is highly inducible by ethanol. Drug Metab Dispos 13:548–552

    CAS  PubMed  Google Scholar 

  • Roberts AE, Kedderis GL, Turner MJ, Rickert DE, Swenberg JA (1991) Species comparison of acrylonitrile epoxidation by microsomes from mice, rats and humans: relationship to epoxide concentrations in mouse and rat blood. Carcinogenesis 12:401–404

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  • Snawder JE, Lipscomb JC (2000) Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul Toxicol Pharmacol 32:200–209

    Article  CAS  PubMed  Google Scholar 

  • Stephens EA, Taylor JA, Kaplan N, Yang CH, Hsieh LL, Lucier GW, Bell DA (1994) Ethnic variation in the CYP2E1 gene: polymorphism analysis of 695 African-Americans, European-Americans and Taiwanese. Pharmacogenetics 4:185–192

    Article  CAS  PubMed  Google Scholar 

  • Subramanian U, Ahmed AE (1995) Intestinal toxicity of acrylonitrile: in vitro metabolism by intestinal cytochrome P450 2E1. Toxicol Appl Pharmacol 135:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sumner SC, Fennell TR, Moore TA, Chanas B, Gonzalez F, Ghanayem BI (1999) Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem Res Toxicol 12:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Thier R, Lewalter J, Kempkes M, Selinski S, Brüning T, Bolt HM (1999) Haemoglobin adducts of acrylonitrile and ethylene oxide in acrylonitrile workers, dependent on polymorphisms of the glutathione transferases GSTT1 and GSTM1. Arch Toxicol 73:197–202

    Article  CAS  PubMed  Google Scholar 

  • Thier R, Lewalter J, Bolt HM (2000) Species differences in acrylonitrile metabolism and toxicity between experimental animals and humans based on observations in human accidental poisonings. Arch Toxicol 74:184–189

    Article  CAS  PubMed  Google Scholar 

  • Thier R, Lewalter J, Bolt HM (2001a) Species differences in acrylonitrile metabolism and toxicity between experimental animals and humans based on observations in human accidental poisonings. Arch Toxicol 74:184–189

    Article  Google Scholar 

  • Thier R, Balkenhol H, Lewalter J, Selinski S, Dommermuth A, Bolt HM (2001b) Influence of polymorphisms of the human glutathione transferases and cytochrome P450 2E1 enzyme on the metabolism and toxicity of ethylene oxide and acrylonitrile. Mutat Res 482:41–46

    CAS  PubMed  Google Scholar 

  • Thier R, Lewalter J, Selinski S, Bolt HM (2002) Possible impact of human CYP2E1 polymorphisms on the metabolism of acrylonitrile. Toxicol Lett 128:249–255

    Article  CAS  PubMed  Google Scholar 

  • Utley HC, Bernheim F, Hachslein P (1967) Effect of sulfhydryl reagent on peroxidation in microsome. Arch Biochem Physiol 114C:29–34

    Article  Google Scholar 

  • Vogel RA, Kirkendall WM (1984) Acrylonitrile (vinyl cyanide) poisoning: a case report. Tex Med 80:48–51

    CAS  PubMed  Google Scholar 

  • Wang H, Chanas B, Ghanayem BI (2002) Cytochrome P450 2E1 (CYP2E1) is essential for acrylonitrile metabolism to cyanide: comparative studies using CYP2E1-Null and wild-type mice. Drug Metab Dispos 30:911–917

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC (2003) Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. Br J Clin Pharmacol 55:77–85

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Cederbaum AI (2005) Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1. Toxicol Appl Pharmacol 207:70–76

    Article  PubMed  Google Scholar 

  • Zhang H, Kamendulis LM, Klaunig JE (2002) Mechanisms for the induction of oxidative stress in Syrian hamster embryo cells by acrylonitrile. Toxicol Sci 67:247–255

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jordi Llorens (University of Barcelona, Spain), Prof. Arthur I. Cederbaum (Mount Sinai School of Medicine, USA) and Prof Peter Spencer (Oregon Health & Science University, USA) for their critical comments and editing. This work was supported in part by the Natural Science Foundation of Jiangsu Province (No. BK 20040061 to Lu Rongzhu), the Social Development Foundation of Jiangsu Province (No. BS 2005049 to Han Fangan and Lu Rongzhu), the Natural Science Foundation of China (No. 30872139 to Lu Rongzhu), SCI-TECH (No. 2008-018-02 to Xu Wenrong), the Nutrition-Disease Team Fund of Jiangsu University (to Lu Rongzhu) and the National Institute of Environmental Health Sciences (No. ES07331 to Michael Aschner).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Rongzhu or Xu Wenrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhua, W., Rongzhu, L., Wenrong, X. et al. Induction or inhibition of cytochrome P450 2E1 modifies the acute toxicity of acrylonitrile in rats: biochemical evidence. Arch Toxicol 84, 461–469 (2010). https://doi.org/10.1007/s00204-010-0519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0519-7

Keywords

Navigation