Skip to main content

Advertisement

Log in

Evidence of early involvement of matrix metalloproteinase-2 in lead-induced hypertension

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Lead exposure increases blood pressure (BP) by unknown mechanisms. Many recent studies have shown the involvement of matrix metalloproteinases (MMPs) in hypertension, particularly MMP-2. In this work, we have examined whether MMP-2 levels increase with lead-induced increase in BP. We have also investigated whether doxycycline (an MMP inhibitor) affects these alterations. To this end, rats were exposed to lead (90 ppm) and treated with doxycycline or vehicle for 8 weeks. Similar aortic and whole blood lead levels were found in lead-exposed rats treated with either doxycycline or vehicle. Lead-induced increases in BP and aortic MMP-2 levels (activity, protein, and mRNA) were blunted by doxycycline. Doxycycline also prevented lead-induced increases in the MMP-2/TIMP-2 mRNA ratio. No significant changes in vascular reactivity or morphometric parameters were found. In conclusion, lead exposure increases BP and vascular MMP-2, which is blunted by doxycycline. This observation suggests that MMP-2 may play a role in lead-induced increases in BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altieri P, Brunelli C, Garibaldi S, Nicolino A, Ubaldi S, Spallarossa P, Olivotti L, Rossettin P, Barsotti A, Ghigliotti G (2003) Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur J Clin Invest 33:648–656

    Article  PubMed  CAS  Google Scholar 

  • Barbosa F Jr, Gerlach RF, Tanus-Santos JE (2006) Matrix metalloproteinase-9 activity in plasma correlates with plasma and whole blood lead concentrations. Basic Clin Pharmacol Toxicol 98:559–564

    Article  PubMed  CAS  Google Scholar 

  • Bernard A, Lauwerys R (1987) Metal-induced alterations of delta-aminolevulinic acid dehydratase. Ann N Y Acad Sci 514:41–47

    Article  PubMed  CAS  Google Scholar 

  • Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L (2003) Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107:1579–1585

    Article  PubMed  CAS  Google Scholar 

  • Bouvet C, Gilbert LA, Girardot D, deBlois D, Moreau P (2005) Different involvement of extracellular matrix components in small and large arteries during chronic NO synthase inhibition. Hypertension 45:432–437

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carmignani M, Boscolo P, Poma A, Volpe AR (1999) Kininergic system and arterial hypertension following chronic exposure to inorganic lead. Immunopharmacology 44:105–110

    Article  PubMed  CAS  Google Scholar 

  • Carmignani M, Volpe AR, Boscolo P, Qiao N, Di Gioacchino M, Grilli A, Felaco M (2000) Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci 68:401–415

    Article  PubMed  CAS  Google Scholar 

  • Castro MM, Rizzi E, Rascado RR, Nagassaki S, Bendhack LM, Tanus-Santos JE (2004) Atorvastatin enhances sildenafil-induced vasodilation through nitric oxide-mediated mechanisms. Eur J Pharmacol 498:189–194

    Article  PubMed  CAS  Google Scholar 

  • Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198:320–321

    Article  PubMed  CAS  Google Scholar 

  • Courtois E, Marques M, Barrientos A, Casado S, Lopez-Farre A (2003) Lead-induced downregulation of soluble guanylate cyclase in isolated rat aortic segments mediated by reactive oxygen species and cyclooxygenase-2. J Am Soc Nephrol 14:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Dao HH, Lemay J, de Champlain J, deBlois D, Moreau P (2001) Norepinephrine-induced aortic hyperplasia and extracellular matrix deposition are endothelin-dependent. J Hypertens 19:1965–1973

    Google Scholar 

  • Ding Y, Gonick HC, Vaziri ND (2000) Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells. Am J Hypertens 13:552–555

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Gonick HC, Vaziri ND, Liang K, Wei L (2001) Lead-induced hypertension. III. Increased hydroxyl radical production. Am J Hypertens 14:169–173

    Article  PubMed  CAS  Google Scholar 

  • Escolar JD, Tejero C, Escolar MA, Montalvo F, Garisa R (1997a) Architecture, elastic fiber, and collagen in the distal air portion of the lung of the 18-month-old rat. Anat Rec 248:63–69

    Article  PubMed  CAS  Google Scholar 

  • Escolar JD, Tejero C, Escolar MA, Montalvo F, Garisa R (1997b) Methodological contributions for the morphometric study of the lung: approximation to the ideal sample size and quantification of collagen fiber. Anat Rec 247:501–511

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Patron C, Radomski MW, Davidge ST (1999) Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res 85:906–911

    PubMed  CAS  Google Scholar 

  • Fernandez-Patron C, Stewart KG, Zhang Y, Koivunen E, Radomski MW, Davidge ST (2000) Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction. Circ Res 87:670–676

    PubMed  CAS  Google Scholar 

  • Gerlach RF, de Souza AP, Cury JA, Line SR (2000) Effect of lead, cadmium and zinc on the activity of enamel matrix proteinases in vitro. Eur J Oral Sci 108:327–334

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Du M, Lopez-Campistrous A, Fernandez-Patron C (2004) Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway. Circ Res 94(1):68–76. Epub 2003 Dec 1

    Google Scholar 

  • Jurczuk M, Moniuszko-Jakoniuk J, Brzoska MM (2006) Involvement of some low-molecular thiols in the peroxidative mechanisms of lead and ethanol action on rat liver and kidney. Toxicology 219:11–21. Epub 2005 Dec 2002

    Google Scholar 

  • Karimi G, Khoshbaten A, Abdollahi M, Sharifzadeh M, Namiranian K, Dehpour AR (2002) Effects of subacute lead acetate administration on nitric oxide and cyclooxygenase pathways in rat isolated aortic ring. Pharmacol Res 46:31–37

    Article  PubMed  CAS  Google Scholar 

  • Kasperczyk S, Dziwisz M, Kasperczyk A, Birkner E (2002) Influence of lead exposure on arterial hypertension. Wiad Lek 55(Suppl 1):230–234

    PubMed  Google Scholar 

  • Khalil-Manesh F, Gonick HC, Weiler EW, Prins B, Weber MA, Purdy RE (1993) Lead-induced hypertension: possible role of endothelial factors. Am J Hypertens 6:723–729

    PubMed  CAS  Google Scholar 

  • Lahat N Fau, Shapiro S, Froom P, Kristal-Boneh E, Inspector M, Miller A (2002) Inorganic lead enhances cytokine-induced elevation of matrix metalloproteinase MMP-9 expression in glial cells. J Neuroimmunol 132(1–2):123–128

  • Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A (2004) Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation 109:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Lima EC, Barbosa F Jr, Krug FJ (2001) Lead determination in slurries of biological materials by ETAAS using a W-Rh permanent modifier. Fresenius J Anal Chem 369:496–501

    Article  PubMed  CAS  Google Scholar 

  • Lynch JR, Blessing R, White WD, Grocott HP, Newman MF, Laskowitz DT (2004) Novel diagnostic test for acute stroke. Stroke 35:57–63

    Article  PubMed  Google Scholar 

  • Marques M, Millas I, Jimenez A, Garcia-Colis E, Rodriguez-Feo JA, Velasco S, Barrientos A, Casado S, Lopez-Farre A (2001) Alteration of the soluble guanylate cyclase system in the vascular wall of lead-induced hypertension in rats. J Am Soc Nephrol 12:2594–2600

    PubMed  CAS  Google Scholar 

  • Martin D, Glass TA, Bandeen-Roche K, Todd AC, Shi W, Schwartz BS (2006) Association of blood lead and tibia lead with blood pressure and hypertension in a community sample of older adults. Am J Epidemiol 163:467–478

    Article  PubMed  Google Scholar 

  • Martinez A, Oh HR, Unsworth EJ, Bregonzio C, Saavedra JM, Stetler-Stevenson WG, Cuttitta F (2004) Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J 383:413–418

    Article  PubMed  CAS  Google Scholar 

  • Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768–784

    Article  PubMed  CAS  Google Scholar 

  • Neuberger JS, Mulhall M, Pomatto MC, Sheverbush J, Hassanein RS (1990) Health problems in Galena, Kansas: a heavy metal mining Superfund site. Sci Total Environ 94:261–272

    Article  PubMed  CAS  Google Scholar 

  • Purdy RE, Smith JR, Ding Y, Oveisi F, Vaziri ND, Gonick HC (1997) Lead-induced hypertension is not associated with altered vascular reactivity in vitro. Am J Hypertens 10:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596

    Article  PubMed  CAS  Google Scholar 

  • Ryan ME, Usman A, Ramamurthy NS, Golub LM, Greenwald RA (2001) Excessive matrix metalloproteinase activity in diabetes: inhibition by tetracycline analogues with zinc reactivity. Curr Med Chem 8:305–316

    PubMed  CAS  Google Scholar 

  • Sang QX, Stetler-Stevenson WG, Liotta LA, Byers SW (1990) Identification of type IV collagenase in rat testicular cell culture: influence of peritubular-Sertoli cell interactions. Biol Reprod 43(6):956–964

    Article  PubMed  CAS  Google Scholar 

  • Schulz R (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 47:211–242

    Article  PubMed  CAS  Google Scholar 

  • Shelkovnikov SA, Gonick HC (2001) Influence of lead on rat thoracic aorta contraction and relaxation. Am J Hypertens 14:873–878

    Article  PubMed  CAS  Google Scholar 

  • Skoczynska A, Wrobel J, Andrzejak R (2001) Lead-cadmium interaction effect on the responsiveness of rat mesenteric vessels to norepinephrine and angiotensin II. Toxicology 162:157–170

    Article  PubMed  CAS  Google Scholar 

  • Souza-Tarla CD, Uzuelli JA, Machado AA, Gerlach RF, Tanus-Santos JE (2005) Methodological issues affecting the determination of plasma matrix metalloproteinase (MMP)-2 and MMP-9 activities. Clin Biochem 38:410–414

    Article  PubMed  CAS  Google Scholar 

  • Stricklin GP, Jeffrey JJ, Roswit WT, Eisen AZ (1983) Human skin fibroblast procollagenase: mechanisms of activation by organomercurials and trypsin. Biochemistry 22:61–68

    Article  PubMed  CAS  Google Scholar 

  • Tayebjee MH, Nadar S, Blann AD, Gareth Beevers D, MacFadyen RJ, Lip GY (2004) Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens 17:764–769

    PubMed  CAS  Google Scholar 

  • Tsao DA, Yu HS, Cheng JT, Ho CK, Chang HR (2000) The change of beta-adrenergic system in lead-induced hypertension. Toxicol Appl Pharmacol 164:127–133

    Article  PubMed  CAS  Google Scholar 

  • Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582

    Article  PubMed  Google Scholar 

  • Vaziri ND, Ding Y (2001) Effect of lead on nitric oxide synthase expression in coronary endothelial cells: role of superoxide. Hypertension 37:223–226

    PubMed  CAS  Google Scholar 

  • Vaziri ND, Ding Y, Ni Z, Gonick HC (1997) Altered nitric oxide metabolism and increased oxygen free radical activity in lead-induced hypertension: effect of lazaroid therapy. Kidney Int 52:1042–1046

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Ding Y, Ni Z (2001) Compensatory up-regulation of nitric-oxide synthase isoforms in lead-induced hypertension; reversal by a superoxide dismutase-mimetic drug. J Pharmacol Exp Ther 298:679–685

    PubMed  CAS  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Etienne-Selloum N, Sarr M, Kane MO, Beretz A, Schini-Kerth VB (2008) Angiotensin II induces the vascular expression of VEGF and MMP-2 in vivo: preventive effect of red wine polyphenols. J Vasc Res 45:386–394

    Article  PubMed  CAS  Google Scholar 

  • Watts SW, Rondelli C, Thakali K, Li X, Uhal B, Pervaiz MH, Watson RE, Fink GD (2007) Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 292:H2438–H2448

    Article  PubMed  CAS  Google Scholar 

  • Webb RC, Winquist RJ, Victery W, Vander AJ (1981) In vivo and in vitro effects of lead on vascular reactivity in rats. Am J Physiol 241:H211–H216

    PubMed  CAS  Google Scholar 

  • Winneke G (1986) Animal studies. In: Lead toxicity, history and environmental impact. Landsdown R, Yule W (eds) The Johns Hopkins University Press, Baltimore, pp 217–233

  • Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    PubMed  CAS  Google Scholar 

  • Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, Ashby MJ, Cockcroft JR, Wilkinson IB (2005) Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 25:372

  • Zhou Y, Zanao RA, Barbosa F, Parsons PJ, Krug FJ (2002) Investigations on a W-Rh permanent modifier for the detection of Pb in blood by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 57:1291–1300

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Brazil; FAPESP-Cinapce-Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil), and PROEX-CAPES (Brazil). We gratefully acknowledge the excellent technical support of Dimitrius Leonardo Pitol.

Conflict of Interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel F. Gerlach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzi, E., Castro, M.M., Fernandes, K. et al. Evidence of early involvement of matrix metalloproteinase-2 in lead-induced hypertension. Arch Toxicol 83, 439–449 (2009). https://doi.org/10.1007/s00204-008-0363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0363-1

Keywords

Navigation