Skip to main content

Advertisement

Log in

Modulation of serum concentrations and hepatic metabolism of 17β-estradiol and testosterone by amitraz in rats

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The present study has investigated the ability of amitraz, a widely used formamidine pesticide, to modulate serum concentrations and liver microsomal metabolism of 17β-estradiol (E2) and testosterone in rats. Amitraz was administered intraperitoneally to male rats for 4 days and to intact female rats or ovariectomized (OVX) and 0.5 mg/kg E2-supplemented female rats for 7 days. E2 and metabolites were analyzed by gas chromatography-electron capture detection and testosterone and metabolites were analyzed by high-pressure liquid chromatography. In OVX and E2-supplemented females, 50 mg/kg amitraz caused an 85% decrease of serum E2 concentration and a marked increase of 2-OH-E2 concentration. Amitraz at 25 and 50 mg/kg produced 9.0-fold or greater increases of serum testosterone and 2β-OH-testosterone levels in males. Amitraz at 25 mg/kg resulted in no or minimal increases of liver microsomal formation of E2 or testosterone metabolites. Amitraz at 50 mg/kg produced 1.4- to 3.6-fold increases of 2-OH-E2; estrone; 2β-, 6β-, and 16α-OH-testosterone; and androstenedione formation in males and intact females. Amitraz at 50 mg/kg preferentially increased intact female 16β-OH-testosterone production by 8.6-fold. In OVX females, E2 supplement alone or cotreatment with E2 and 50 mg/kg amitraz produced 1.3- to several-fold increases of 2- and 4-OH-E2 formation and 2β- and 16α-OH-testosterone production. The cotreatment increased 6β- and 16β-OH-testosterone formation by 1.8- and 1.6-fold, respectively. The present findings show that amitraz induces hepatic E2 and testosterone metabolism in male and female rats, decreases serum E2 concentration in OVX and E2-supplemented females, but increases serum testosterone in males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • al-Qarawi AA, al-Damegh MS, Adam SE (1999) Effects of amitraz given by different routes on rats. Vet Hum Toxicol 41:355–357

    PubMed  CAS  Google Scholar 

  • Al-Thani RK, Al-Thani AS, Elbetieha A, Darmani H (2003) Assessment of reproductive and fertility effects of amitrz pesticide in male mice. Toxicol Lett 138:253–260

    Article  PubMed  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptor and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  • Arlotto MP, Trant JM, Estabrook RW (1991) Measurement of steroid hydroxylation reactions by high-performance liquid chromatography as indicator of P450 identity and function. Methods Enzymol 206:454–462

    Article  PubMed  CAS  Google Scholar 

  • Baltes MRH, Dubois JG, Hanocq M (1998) Ethyl acetate extraction procedure and isocratic high-performance liquid chromatographic assay for testosterone metabolites in cell microsomes. J Chromatogr B Biomed Sci Appl 706:201–207

    Article  PubMed  CAS  Google Scholar 

  • Costa LG, Olibet G, Murphy SD (1988) Alpha2-adrenoceptors as a target of formamidine pesticides: in vitro and in vivo studies in mice. Toxicol Appl Pharmacol 93:319–328

    Article  PubMed  CAS  Google Scholar 

  • Dai D, Cao Y, Fall G, Levi PE, Hodgson E, Rose R (2001) Modulation of mouse P450 isoforms CYP1A2, CYP2B10, CYP2E1, and CYP3A by the environmental chemicals mirex, vinclozolin, and flutamide. Pestic Biochem Physiol 70:127–141

    Article  CAS  Google Scholar 

  • Goldman JM, Cooper RL, Rehnberg GL, Edwards TL, McElroy WK, Hein J (1990) Chlordimeform-induced alterations in endocrine regulation within the male rat reproductive system. Toxicol Appl Pharmacol 104:25–35

    Article  PubMed  CAS  Google Scholar 

  • Goldman JM, Cooper RL, Rehnberg GL, Edwards TL, McElroy WK, Hein J (1991) Suppression of the luteinizing hormone surge by chlordimeform in ovariectomized, steroid-primed female rats. Pharmacol Toxicol 68:131–136

    Article  PubMed  CAS  Google Scholar 

  • Goldman JM, Laws SC, Balchak SK, Cooper RL, Kavlock RJ (2000) Endocrine-disrupting chemicals: prepubertal exposure and effects on sexual maturation and thyoid activity in the female rat. A focus on the EDSTAC recommendations. Crit Rev Toxicol 30:135–196

    Article  PubMed  CAS  Google Scholar 

  • Guillette LJ (2006) Endocrine disrupting contaminants-beyond the dogma. Environ Health Perspect 114:9–12

    Article  PubMed  Google Scholar 

  • Kavlock RJ, Ankley GT (1996) A perspective on the risk assessment process for endocrine-disruptive effects on wildlife and human health. Risk Anal 16:731–739

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Shin JY, Yang YS, Shin DH, Moon CJ, Kim SH, Park SC, Kim YB, Kim HC, Chung MK (2007) Evaluation of developmental toxicity of amitraz in Sprague-Dawley rats. Arch Environ Contam Toxicol 52:137–144

    Article  PubMed  CAS  Google Scholar 

  • Li HC, Dehal SS, Kupfer D (1995) Induction of the hepatic CYP2B and CYP3A enzymes by the proestrogenic pesticide methoxychlor and by DDT in the rat. Effects on methoxychlor metabolism. J Biochem Toxicol 10:51–61

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein determinations with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Magnusson MO, Sandström R (2004) Quantitative analysis of eight testosterone metabolites using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 18:1089–1094

    Article  PubMed  CAS  Google Scholar 

  • Moser VC (1991) Investigations of amitraz neurotoxicity in rats. IV. Assessment of toxicity syndrome using a functional observation battery. Fundam Appl Toxicol 17:7–16

    Article  PubMed  CAS  Google Scholar 

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    PubMed  CAS  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  • Oropeza-Hernandez LF, Lopez-Romero R, Albores A (2003) Hepatic CYP1A, 2B, 2C, 2E and 3A regulation by methoxychlor in male and female rats. Toxicol Lett 144:93–103

    Article  PubMed  CAS  Google Scholar 

  • Palermo-Neto J, Florio JC, Sakate M (1994) Developmental and behavioral effects of prenatal amitraz exposure in rats. Neurotoxicol Teratol 16:65–70

    Article  PubMed  CAS  Google Scholar 

  • Pinnella KD, Cranmer BK, Tessari JD, Cosma GN, Veeramachaneni DN (2001) Gas chromatographic determination of catecholestrogens following isolation by solid-phase extraction. J Chromatogr B Biomed Sci Appl 758:145–152

    Article  PubMed  CAS  Google Scholar 

  • Poirier D, Bydal P, Tremblay MR, Sam KM, Luu-The V (2001) Inhibitors of type II 17beta-hydroxysteroid dehydrogenase. Mol Cell Endocrinol 171:119–128

    Article  PubMed  CAS  Google Scholar 

  • Ryan DE, Levin W (1990) Purification and characterization of hepatic microsomal cytochrome P-450. Pharmacol Ther 45:153–229

    Article  PubMed  CAS  Google Scholar 

  • Safe S, Wormke M (2003) Inhibitory aryl hydrocarbon receptor-estrogen receptor cross-talk and mechanism of action. Chem Res Toxicol 16:807–816

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Fujita KL, Munakata H, Itoh S, Nakamura K, Kamataki T, Yoshizawa I (2000) Studies on the interactions between drugs and estrogen: analytical method for prediction system of Gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase. Anal Biochem 286:179–186

    Article  PubMed  CAS  Google Scholar 

  • Ueng TH, Hung CC, Wang HW, Chan PK (2004) Effects of amitraz on cytochrome P450-dependent monooxygenases and estrogenic activity in MCF-7 human breast cancer cells and immature female rats. Food Chem Toxicol 42:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Williams TM, Borghoff SJ (2000) Induction of testosterone biotransformation enzymes following oral administration of methyl tert-butyl ether to male Sprague-Dawley rats. Toxicol Sci 57:147–155

    Article  PubMed  CAS  Google Scholar 

  • Wood AW, Ryan DR, Thomas PE, Levin W (1983) Regio- and steroselective metabolism of two C19 steroids by five highly purified and reconstituted rat hepatic cytochrome P-450 isozymes. J Biol Chem 258:8839–8847

    PubMed  CAS  Google Scholar 

  • Yager JD, Liehr JG (1996) Molecular mechanisms of estrogen carcinogenesis. Ann Rev Pharmacol Toxicol 36:203–232

    Article  CAS  Google Scholar 

  • Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19:1–27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants 96AS-14.2.2-BQ-B3 from Council of Agriculture and NSC95-2314-B-002-256-My3 from National Science Council, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzuu-Huei Ueng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, CP., Lu, SY. & Ueng, TH. Modulation of serum concentrations and hepatic metabolism of 17β-estradiol and testosterone by amitraz in rats. Arch Toxicol 82, 729–737 (2008). https://doi.org/10.1007/s00204-008-0288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0288-8

Keywords

Navigation