Skip to main content
Log in

Gene expression profile in monocyte during in vitro mineral fiber degradation

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A human monocytes cell line, U-937, incubated in the presence of filtered medium from Escherichia coli culture (FS) has been previously reported to degrade man made mineral fiber and it has been indicated as a good paradigm of in vivo fiber biopersistence evaluation (manuscript accepted for publication). In the present paper, a study is reported aimed to define the molecular modification occurring in the U-937 monocytes during in vitro fiber degradation. The induction of gene expression was investigated in U-937 exposed to rock wool fibers (HDN) in the presence of FS by transcriptome analysis using 20 K DNA microarrays and quantitative RT-PCR. The over-expression of genes related to mobility and cellular adhesion, oxidative stress, immune system stimulation, enzymes, and ions transport protein systems were identified. Among them NCF1 gene, the gene encoding a subunit of NADPH oxidase, over-expression was detected. As the product of this gene allows the formation of superoxide anion that could lead to oxidative stress, HDN fibers were exposed to hydrogen peroxide. Fiber degradation similar to those observed upon incubation with U-937 in the presence of FS was obtained thus suggesting that reactive oxygen species production may be responsible for fiber degradation by U-937 monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson F, Game BA, Atchley D, Xu M, Lopes-Virella MF, Huang Y (2002) IFN-gamma pretreatment augments immune complex-induced matrix metalloproteinase-1 expression in U937 histiocytes. Clin Immunol 102:200–207

    Article  PubMed  CAS  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  • Bernstein DM (2007) Synthetic vitreous fibers: a review toxicology, epidemiology and regulations. Crit Rev Toxicol 37(10):839–886

    Article  PubMed  CAS  Google Scholar 

  • Bernstein DM, Riego Sintes JM, Ersboell BK, Kunert J (2001a) Biopersistence of synthetic mineral fibers as a predictor of chronic inhalation toxicity in rats. Inhal Toxicol 13:823–849

    Article  PubMed  CAS  Google Scholar 

  • Bottin MC, Vigneron JC, Rousseau R, Micillino JC, Eypert-Blaison C, Kauffer E, Martin P, Binet S, Rihn BH (2003) Man-made mineral fiber hazardous properties assessment using transgenic rodents: example of glass fiber testing. Inhal Toxicol 15:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Fisher C, Donaldson K (1998) Free radical activity of synthetic vitreous fibers: iron chelation inhibits hydroxyl radical generation by refractory ceramic fiber. J Toxicol Environ Health A 53:545–561

    Article  PubMed  CAS  Google Scholar 

  • Carre P, Leophonte P (1993) Cytokines and pulmonary fibroses. Rev Mal Respir 10:193–207

    PubMed  CAS  Google Scholar 

  • Cullen RT, Searl A, Buchanan D, Davis JM, Miller BG, Jones AD (2000) Pathogenicity of a special-purpose glass microfiber (E glass) relative to another glass microfiber and amosite asbestos. Inhal Toxicol 12:959–977

    Article  PubMed  CAS  Google Scholar 

  • De Méringo (2005) Solubility of rock wool fibres containing high alumina contents according to the pH (personal communication)

  • Dika Nguea H, Rihn B, Mahon D, Bernard JL, De Reydellet A, Le Faou A (2005) Effects of various man-made mineral fibers on cell apoptosis and viability. Arch Toxicol 79:487–492

    Article  PubMed  CAS  Google Scholar 

  • Dika Nguea H, de Reydellet A, Lehuédé P, de Méringo A, Robé A, LE Faou A, Rihn B (2007a) A new in vitro cellular system for the analysis of mineral fiber bipoersistence. Arch Toxicol. doi:10.1007/s00204-007-0257-7

  • Donaldson K, Hill IM, Beswick PH (1995) Superoxide anion release by alveolar macrophages exposed to respirable industrial fibres: modifying effect of fibre opsonisation. Exp Toxicol Pathol 47:229–231

    PubMed  CAS  Google Scholar 

  • Dorger M, Munzing S, Allmeling AM, Krombach F (2000) Comparison of the phagocytic response of rat and hamster alveolar macrophages to man-made vitreous fibers in vitro. Hum Exp Toxicol 19:635–640

    Article  PubMed  CAS  Google Scholar 

  • Driscoll KE (1994) Macrophage inflammatory proteins: biology and role in pulmonary inflammation. Exp Lung Res 20:473–490

    Article  PubMed  CAS  Google Scholar 

  • Driscoll KE, Lindenschmidt RC, Maurer JK, Higgins JM, Ridder G (1990) Pulmonary response to silica or titanium dioxide: inflammatory cells, alveolar macrophage-derived cytokines, and histopathology. Am J Respir Cell Mol Biol 2:381–390

    PubMed  CAS  Google Scholar 

  • Driscoll KE, Maurer JK, Higgins J, Poynter J (1995) Alveolar macrophage cytokine and growth factor production in a rat model of crocidolite-induced pulmonary inflammation and fibrosis. J Toxicol Environ Health 46:155–569

    Article  PubMed  CAS  Google Scholar 

  • Drumm K, Schindler H, Buhl R, Kustner E, Smolarski R, Kienast K (1999) Indoor air pollutants stimulate interleukin-8-specific mRNA expression and protein secretion of alveolar macrophages. Lung 177:9–19

    Article  PubMed  CAS  Google Scholar 

  • Gilmour PS, Brown DM, Beswick PH, MacNee W, Rahman I, Donaldson K (1997) Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors. Environ Health Perspect 105(suppl 5):1313–1317

    Article  PubMed  CAS  Google Scholar 

  • Gorlach A, Lee PL, Roesler J, Hopkins PJ, Christensen B, Green ED, Chanock SJ, Curnutte JT (1997) A p47-phox pseudogene carries the most common mutation causing p47-phox- deficient chronic granulomatous disease. J Clin Invest 100:1907–1908

    Article  PubMed  CAS  Google Scholar 

  • Hayem A, Scharfman A, Laine A, Lafitte JJ, Degand P (1983) Bronchoalveolar lavage in pneumoconiosis of coal miners. Biochemical aspects. Rev Fr Mal Respir 11:417–426

    PubMed  CAS  Google Scholar 

  • Hill IM, Beswick PH, Donaldson K (1996) Enhancement of the macrophage oxidative burst by immunoglobulin coating of respirable fibers: fiber-specific differences between asbestos and man-made fibers. Exp Lung Res 22:133–148

    Article  PubMed  CAS  Google Scholar 

  • Hirata T, Bitterman PB, Mornex JF, Crystal RG (1986) Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation. J Immunol 136:1339–1345

    PubMed  CAS  Google Scholar 

  • Iles KE, Forman HJ (2002) Macrophage signaling and respiratory burst. Immunol Res 26:95–105

    Article  PubMed  CAS  Google Scholar 

  • Kreipe H, Radzun HJ, Parwaresch MR (1986) Phenotypic differentiation patterns of the human monocyte/macrophage system. Histochem J 18:441–450

    Article  PubMed  CAS  Google Scholar 

  • Lesser M, Chang JC, Galicki NI, Edelman J, Cardozo C (1989) Cathepsin B and D activity in alveolar macrophages from rats with pulmonary granulomatous inflammation or acute lung injury. Agents Actions 28:264–271

    Article  PubMed  CAS  Google Scholar 

  • Mohr S, Bottin MC, Lannes B, Neuville A, Bellocq JP, Keith G, Rihn BH (2004) Microdissection, mRNA amplification and microarray: a study of pleural mesothelial and malignant mesothelioma cells. Biochimie 86:13–19

    Article  PubMed  CAS  Google Scholar 

  • Morimoto Y, Tsuda T, Nakamura H, Hori H, Yamato H, Nagata N, Higashi T, Kido M, Tanaka I (1997) Expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, and extracellular matrix mRNA following exposure to mineral fibers and cigarette smoke in vivo. Environ Health Perspect 105(suppl 5):1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Morimoto Y, Tsuda T, Hirohashi M, Yamato H, Hori H, Ohgami A, Yatera K, Kim HN, Ding L, Kido M, Higashi T, Tanaka I (1999) Effects of mineral fibers on the gene expression of proinflammatory cytokines and inducible nitric-oxide synthase in alveolar macrophages. Ind Health 37:329–334

    Article  PubMed  CAS  Google Scholar 

  • Olakanmi O, Stokes JB, Britigan BE (1994) Acquisition of iron bound to low molecular weight chelates by human monocyte-derived macrophages. J Immunol 153:2691–2703

    PubMed  CAS  Google Scholar 

  • Rennard SI, Hunninghake GW, Bitterman PB, Crystal RG (1981) Production of fibronectin by the human alveolar macrophage: mechanism for the recruitment of fibroblasts to sites of tissue injury in interstitial lung diseases. Proc Natl Acad Sci USA 78:7147–7151

    Article  PubMed  CAS  Google Scholar 

  • Rihn BH, Mohr S, McDowell SA, Binet S, Loubinoux J, Galateau F, Keith G, Leikauf GD (2000a) Differential gene expression in mesothelioma. FEBS Lett 480:95–100

    Article  PubMed  CAS  Google Scholar 

  • Rihn B, Coulais C, Kauffer E, Bottin MC, Martin P, Yvon F, Vigneron JC, Binet S, Monhoven N, Steiblen G, Keith G (2000b) Inhaled crocidolite mutagenicity in lung DNA. Environ Health Perspect 108:341–346

    Article  PubMed  CAS  Google Scholar 

  • Rom WN (1991) Relationship of inflammatory cell cytokines to disease severity in individuals with occupational inorganic dust exposure. Am J Ind Med 19:15–27

    Article  PubMed  CAS  Google Scholar 

  • Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC (2005) Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 78:1025–1042

    Article  PubMed  CAS  Google Scholar 

  • Ward CJ, Crocker J, Chan SJ, Stockley RA, Burnett D (1990) Changes in the expression of elastase and cathepsin B with differentiation of U937 promonocytes by GMCSF. Biochem Biophys Res Commun 167:659–664

    Article  PubMed  CAS  Google Scholar 

  • Wesselius LJ, Smirnov IM, Nelson ME, O’Brien-Ladner AR, Flowers CH, Skikne BS (1996) Alveolar macrophages accumulate iron and ferritin after in vivo exposure to iron or tungsten dusts. J Lab Clin Med 127:401–409

    Article  PubMed  CAS  Google Scholar 

  • Zoller T, Zeller WJ (2000) Production of reactive oxygen species by phagocytic cells after exposure to glass wool and stone wool fibres—effect of fibre preincubation in aqueous solution. Toxicol Lett 114:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand H. Rihn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dika Nguea, H., de Reydellet, A., Lehuédé, P. et al. Gene expression profile in monocyte during in vitro mineral fiber degradation. Arch Toxicol 82, 355–362 (2008). https://doi.org/10.1007/s00204-007-0258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0258-6

Keywords

Navigation