Skip to main content
Log in

Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This study is aimed at exploring the possible mechanism of hypnosis-enhancing effect of HgS or cinnabar (a traditional Chinese medicine containing more than 95% HgS) in mice treated with pentobarbital. We also examined whether the effect of HgS is different from that of the well-known methyl mercury (MeHg). After a short period (7 days) of oral administration to mice, a nontoxic dose (0.1 g/kg) of HgS not only significantly enhanced pentobarbital-induced hypnosis but also attenuated tolerance induction; while a higher dose (1 g/kg) of HgS or cinnabar exerted an almost irreversible enhancing effect on pentobarbital-hypnosis similar to that of MeHg (2 mg/kg) tested, which was still effective even after 10 or 35 days cessation of administration. To study comparatively the effects of different mercury forms from oral administration of MeHg and HgS on membrane ATPase activities of experimental mice, analysis of the Hg content in the cerebral cortex revealed that correlated with the decrease of Na+/K+-ATPase and Ca2+-ATPase activities. Furthermore, NO levels of blood but not that of cerebral cortex were also decreased by mercuric compounds. Although pentobarbital alone enhanced cytochrome p450–2C9 in time dependent manner, all of mercurial compounds tested had no such effect. All of these findings indicated that the mercurial compounds including cinnabar, HgS and MeHg exert a long-lasting enhancing hypnotic activity without affecting pentobarbital metabolism, which provides evidence-based sedative effect of cinnabar used in Chinese traditional medicine for more than 2,000 years. The nontoxic HgS dosing (0.1 g/kg/day) for consecutive 7 days is perhaps useful for delaying or preventing pentobarbital-tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexidis AN, Rekka EA, Kourounakis PN (1994) Influence of mercury and cadmium intoxication on hepatic microsomal CYP2E and CYP3A subfamilies. Res Commun Mol Pathol Pharmacol 85(1):67–72

    PubMed  CAS  Google Scholar 

  • Anjum F, Shakoori AR (1994) Sublethal effects of inorganic mercury on the bodygrowth rate and liver function enzymes of phenobarbitone-pretreated and promethazine-pretreated rabbits. J Environ Pathol Toxicol Oncol 13(2):125–132

    PubMed  CAS  Google Scholar 

  • Annau Z (1987) The use of pharmacological challenges in behavioral toxicology. Zentralbl Bakteriol Mikrobiol Hyg B 185(1–2):61–64

    PubMed  CAS  Google Scholar 

  • Aschner M, Clarkson TW (1988) Distribution of mercury 203 in pregnant rats and their fetuses following systemic infusions with thiol-containing amino acids and glutathione during late gestation. Teratology 38(2):145–155

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, Clarkson TW (1987) Mercury 203 distribution in pregnant andnonpregnant rats following systemic infusions with thiol-containing amino acids. Teratology 36(3):321–328

    Article  PubMed  CAS  Google Scholar 

  • Birke G, Johnels AG, Plantin LO, Sjostrand B, Skerfving S, Westermark T (1972) Studies on humans exposed to methyl mercury through fish consumption. Arch Environ Health 25:77–91

    PubMed  CAS  Google Scholar 

  • Boldyrev AA, Bulygina ER, Kramarenko GG, Vanin AF (1997) Effect of nitroso compounds on Na+/K+-ATPase. Biochim Biophy Acta 1321:243–251

    Article  CAS  Google Scholar 

  • Cali JJ, Ma D, Sobol M, Simpson DJ, Frackman S, Good TD, Daily WJ, Liu D. (2006) Luminogenic cytochrome P450 assays. Expert Opin Drug Metab Toxicol Aug; 2(4):629–645

    Article  CAS  Google Scholar 

  • Cember H (1969) A model for the kinetics of mercury elimination. Am Ind Hyg Assoc J 30:367–371

    PubMed  CAS  Google Scholar 

  • Chakrabarti SK (1981) Influence of mercury of the anesthetic response to and of distribution thiopental in rats. J Toxicol Env Health 7:765–774

    Article  CAS  Google Scholar 

  • Chen Y, Ferguson SS, Negishi M, Goldstein JA (2004) Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exper Ther 308:495–501

    Article  CAS  Google Scholar 

  • Chuu JJ, Hsu CJ, Lin-Shiau SY (2001b) Abnormal auditory brainstem responses for mice treated with mercurial compounds: involvement of excessive nitric oxide. Toxicology 162(1):11–22

    Article  PubMed  CAS  Google Scholar 

  • Chuu JJ, Liu SH, Lin-Shiau SY (2001c) Effects of methyl mercury, mercuric sulfide and cinnabar on active avoidance responses, Na+/K+-ATPase activities and tissue mercury contents in rats. Proc Natl Sci Counc Repub China B 25(2):128–136

    PubMed  CAS  Google Scholar 

  • Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17(1):27–41 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Eto K (2006) Minamata disease: a neuropathological viewpoint. Seishin Shinkeigaku Zasshi 108(1):10–23 (Review)

    PubMed  Google Scholar 

  • Fernandez-Martinez R, Rucandio MI (2005) Study of the suitability of HNO3 and HCl as extracting agents of mercury species in soils from cinnabar mines. Anal Bioanal Chem 381(8):1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Foley TD, Rhoads DE (1994) Stimulation of synaptosomal Na+, K(+)-ATPase by ethanol: possible involvement of an isozyme-specific inhibitor of Na+, K(+)-ATPase. Brain Res 653:167–172

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith RH, Soares JH Jr (1975) Barbiturate potentiation in mercury poisoning. Bull Environ Contam Toxicol 13(6):737–740

    Article  PubMed  CAS  Google Scholar 

  • Guillaume D, Grisar T, Delgado Escueta AV (1986) Phenytoin dephosphorylates the catalytic subunit of the Na+/K+-ATPase in C57 BL mice. J Neurochem 47:904–911

    Article  PubMed  CAS  Google Scholar 

  • Hardy AD, Sutherland HH, Vaishnav R, Worthing MA (1995) A report on the composition of mercurials used in traditional medicines in Oman. J Ethnopharmacol 49(1):17–22

    Article  PubMed  CAS  Google Scholar 

  • Ho BS, Lin JL, Huang CC, Tsai YH, Lin MC (2003) Mercury vapor inhalation from Chinese red (Cinnabar). J Toxicol Clin Toxico 41(1):75–78

    Article  CAS  Google Scholar 

  • Iverson F, Downie RH, Trenholm HL, Paul C (1974) Accumulation and tissue distribution of mercury in the guinea pig during subacute administration of methyl mercury. Toxicol Appl Pharm 27:60–69

    Article  CAS  Google Scholar 

  • Iwakawa S, Miyashita K, Hashimoto Y, Kuroda T (2006) Effect of glimepiride and glibenclamide on S-warfarin 7-hydroxylation by human liver microsomes, recombinant human CYP2C9.1 and CYP2C9.3. Biol Pharm Bull 29(9):1983–1985

    Article  PubMed  CAS  Google Scholar 

  • Kadiyska M, Stoytchev T (1979) Influence of the acute intoxication with salts of some heavy metals on hexobarbital sleep and hexobarbital metabolism. Acta Physiol Pharmacol Bulg 5(4):35–43

    PubMed  CAS  Google Scholar 

  • Kaliman PA, Nikitchenko IV, Barannik TV, Sokol OA (1999) Metabolism of heme and hemoproteins in rat liver upon administration of mercuric chloride. Ukr Biokhim Zh 71(6):81–85

    PubMed  CAS  Google Scholar 

  • Kawalek JC, Howard KD, Farrell DE, Derr J, Cope CV, Jackson JD, Myers MJ (2003) Effect of oral administration of low doses of pentobarbital on the induction of cytochrome P450 isoforms and cytochrome P450-mediated reactions in immature Beagles. Am J Vet Res 64(9):1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Nakai K, Kameo S, Kurokawa N, Liu ZM, Satoh H (2000) Protective effect of melatonin on methylmercury-induced mortality in mice. Tohoku J Exp Med 191(4):241–246

    Article  PubMed  CAS  Google Scholar 

  • Knobeloch L, Steenport D, Schrank C, Anderson H (2006) Methylmercury exposure in wisconsin: a case study series. Environ Res 101(1):113–22

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov DA, Zavijalov NV, Govorkov AV, Sibileva TM (1987) Methyl mercury-induced nonselective blocking of phosphorylation processes as a possible cause of protein synthesis inhibition in vitro and in vivo. Toxicol Lett 36(2):153–160

    Article  PubMed  CAS  Google Scholar 

  • Larrey D, Pageaux GP (1997) Genetic predisposition to drug-induced hepatotoxicity. J Hepatol 26(Suppl 2):12–21 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Han DH (1995) Maternal and fetal toxicity of methylmercuric chloride administered to pregnant Fischer 344 rats. J Toxicol Environ Health 45(4):415–425

    PubMed  CAS  Google Scholar 

  • Liang AH, Xu YJ, Shang MF (2005) Analysis of adverse effects of cinnabar. Zhongguo Zhong Yao Za Zhi 30(23):1809–1811

    PubMed  Google Scholar 

  • Lin CH, Kang BH, Wong CH, Mao SH, Wan FJ (1999) Systemic administration of d-amphetamine induced a delayed production of nitric oxide in the straitum of rats. Neurosci Lett 276:141–144

    Article  PubMed  CAS  Google Scholar 

  • Liu SH, Sheu ZJ, Lin RH, Lin Shiau SY (1997) The in vivo effect of lipopoly-saccharide on neuromuscular transmission in the mouse. Eur J Pharmacol 333:241–247

    Article  PubMed  CAS  Google Scholar 

  • Loredo J, Alvarez R, Ordonez A (2005) Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain). Sci Total Environ 340(1–3):247–260

    PubMed  CAS  Google Scholar 

  • Masubuchi Y, Hosokawa S, Horie T, Suzuki T, Ohmori S, Kitada M, Narimatsu S (1994) Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 22(6):909–915

    PubMed  CAS  Google Scholar 

  • Nabeshima T, Ho IK (1981) Pharmacological responses to pentobarbital in different strains of mice. J Pharmacol Exp Ther J216(1):198–204

    Google Scholar 

  • Park TM (1994) Abnormal cortical unit activity of the reticular formation. Electromyo Clin Neurophysiol 34:427–435

    CAS  Google Scholar 

  • Pokk P, Sepp E, Vassiljev V, Vali M (2001) The effects of the nitric oxide synthase inhibitor 7-nitroindazole on the behaviour of mice after chronic ethanol administration. Alcohol Alcohol 36(3):193–198

    PubMed  CAS  Google Scholar 

  • Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM (2002) Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther 302(2):475–482

    Article  PubMed  CAS  Google Scholar 

  • Rohn TT, Hinds TR, Vincenzi FF (1993) Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol 46:525–534

    Article  PubMed  CAS  Google Scholar 

  • Sahi J, Stern RH, Milad MA, Rose KA, Gibson G, Zheng X, Stilgenbauer L, Sadagopan N, Jolley S, Gilbert D, LeCluyse EL (2004) Effects of avasimibe on cytochrome P450 2C9 expression in vitro and in vivo. Drug Metab Dispos 32(12):1370–1376

    Article  PubMed  CAS  Google Scholar 

  • Sano K, Shimojo N, Yamaguchi S (1990) Effects of methylmercury on ethanol induced sleeping time of mice. Nippon Eiseigaku Zasshi 45(2):717–722

    PubMed  CAS  Google Scholar 

  • Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, Phillips RS (2004) Heavy metal content of ayurvedic herbal medicine products. JAMA 292(23):2868–2873

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Seo N, Kobahashi E (2005) The dosing-time dependent effects of intravenous hypnotics in mice. Anesth Analg 101(6):1706–1708

    Article  PubMed  Google Scholar 

  • Schoof RA, Nielsen JB (1997) Evaluation of methods for assessing the oral bioavailability of inorganic mercury in soil. Risk Anal 17:545–555 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Shinyashiki M, Kumagai Y, Nakajima H, Nagafune J, Homma Takeda S, Sagai M, Shimojo N (1998) Differential changes in rat brain nitric oxide synthase in vivo and in vitro by methylmercury. Brain Res 798:147–155

    Article  PubMed  CAS  Google Scholar 

  • Stoytchev T, Krotev L (1978) Effect of subacute intoxication with some heavy metals on hexobarbital sleep and metabolism. Acta Physiol Pharmacol Bulg 4(3):29–35

    PubMed  CAS  Google Scholar 

  • Strolin Benedetti M, Whomsley R, Baltes E (2006) Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2(6):895–921 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Su MQ, Okita GT (1986) Effects of methylmercury on hypnotic action of hexobarbital, liver hydroxylase and cytochrome P-450 in mice. Toxicology 39(3):233–245

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kneller MB, Rock DA, Jones JP, Trager WF, Rettie AE (2004) Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors. Arch Biochem Biophys 429(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Talarek S, Fidecka S (2004) Involvement of nitricoxidergic system in thehypnotic effects of benzodiazepines in mice. Pol J Pharmacol 56(6):719–726

    PubMed  CAS  Google Scholar 

  • Talarek S, Fidecka S (2002) Role of nitric oxide in benzodiazepines-induced antinociception in mice. Pol J Pharmacol J54(1):27–34

    Google Scholar 

  • Testa B, Kramer SD (2007) The biochemistry of drug metabolism—an introduction: part 2. Redox reactions and their enzymes. Chem Biodivers 4(3):257–405 Review

    Article  PubMed  CAS  Google Scholar 

  • Tonner PH, Scholz J, Schlamp N, Schulteam Esch J (1999) Inhibition of nitric oxide metabolism enhances the hypnotic-anesthetic action of the alpha2-adrenoceptor agonist dexmedetomidine in vivo. J Neurosurg Anesth 11:37–41

    CAS  Google Scholar 

  • Trasande L, Landrigan PJ, Schechter C (2006) Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113(5):590–596

    Article  CAS  Google Scholar 

  • Vezer T, Papp A, Kurunczi A, Parducz A, Naray M, Nagymajtenyi L (2005) Behavioral and neurotoxic effects seen during and after subchronic exposure of rats to organic mercury. Environ Toxicol Pharmacol 19:785–796

    Article  CAS  Google Scholar 

  • Wang JH, Ye ZG, Liang AH, Xue BY, Wang YS, Wang ZM, Wang L, Li CY, Zhang J, Huang N, Jin AY (2003) Absorption and distribution of mercury and arsenic from realgar and cinnabar of angong niuhuang pill in normal rats and rats with cerebral ischemia. Zhongguo Zhong Yao Za Zhi 28(7):639–642

    PubMed  Google Scholar 

  • Wang WH, Yu ZH, Cai M, Xu XM, Wu GP (1990) Antifertility actions of gossypol derivatives and analogues. Acta Pharmacologica Sinica. 11(3):268–271

    PubMed  CAS  Google Scholar 

  • Weaver RJ, Thompson S, Smith G, Dickins M, Elcombe CR, Mayer RT, Burke MD (1994) A comparative study of constitutive and induced alkoxyresorufin O-dealkylation and individual cytochrome P450 forms in cynomolgus monkey (Macaca fascicularis), human, mouse, rat and hamster liver microsomes. Biochem Pharmacol 47(5):763–773

    Article  PubMed  CAS  Google Scholar 

  • Wild LG, Ortega HG, Lopez M, Salvaggio JE (1997) Immune system alteration in the rat after indirect exposure to methyl mercury chloride or methyl mercury sulfide. Environ Res 74:34–42

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Minami T, Yamada G, Tohno Y, Tohno S, Ikeda Y, Tashiro T, Kohno Y, Kawakami K (1997) Different element ratios of red cosmetics excavated from ancient burials of Japan. Sci Total Environ 199(3):293–298

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto I (1985) Studies on the behavior of mercury and selenium in blood of mice injected with those elements. Hokkaido Igaku Zasshi 60(2):227–240

    PubMed  CAS  Google Scholar 

  • Yamamoto I, Ho IK (1978) Sensitivity to continuous administration of pentobarbital in different strains of mice. Res Commun Chem Pathol Pharmacol 19(3):381–388

    PubMed  CAS  Google Scholar 

  • Ye ZG, Wang JH, Liang AH, Xue BY, Wang YS, Wang ZM, Wang L, Li CY, Zhang J, Huang N, Jin AY (2003) Comparative studies on pharmacological effects of angong niuhuang pill with its simplified prescription. Zhongguo Zhong Yao Za Zhi 28(7):636–639

    PubMed  Google Scholar 

  • Yen CC, Liu SH, Chen WK, Lin RH, Lin-Shiau SY (2002) Tissue distribution of different mercurial compounds analyzed by the improved FI-CVAAS. J Anal Toxicol 26(5):286–295

    PubMed  CAS  Google Scholar 

  • Yeoh TS, Lee AS, Lee HS (1986) Absorption of mercuric sulphide following oral administration in mice. Toxicology 41:107–111

    Article  PubMed  CAS  Google Scholar 

  • Young YH, Chuu JJ, Liu SH, Lin-Shiau SY (2002) Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibulo-ocular reflex system of guinea pigs. Toxicol Sci 67(2):256–263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by a research grant (CCMP88-RD-045) Committee on Chinese pharmacy, Department of Health, Executive Yuan, Taipei, Taiwan and a research grant (NSC-94-2-2320-B-002-010 and NSC 93-2320-B-002-045) from National Science Council, Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoei-Yn Lin-Shiau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuu, JJ., Huang, ZN., Yu, HH. et al. Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex. Arch Toxicol 82, 343–353 (2008). https://doi.org/10.1007/s00204-007-0255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0255-9

Keywords

Navigation