Skip to main content
Log in

Effects of SO2 derivatives on expressions of MUC5AC and IL-13 in human bronchial epithelial cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Sulfur dioxide (SO2) is a common air pollutant, and inhaled SO2 in airway epithelium easily forms its soluble derivatives in vivo (bisulfite and sulfite), which are toxic to the respiratory system and related to the exacerbation of asthma. To investigate the effects of SO2 derivatives on the expressions of asthma related genes (MUC5AC and IL-13), the mRNA and protein levels of the two genes in cultured human bronchial epithelial (BEP2D) cells were analyzed using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay, immunocytochemistry method and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that the mRNA expressions of MUC5AC and IL-13 were significantly increased at different concentrations of SO2 derivatives (0.0001, 0.001, 0.01, 0.1 and 1.0 mM), and the maximum appeared at 0.01 mM for MUC5AC (3.9-fold) or at 0.001 mM for IL-13 (4.7-fold). Meanwhile, SO2 derivatives significantly increased the mRNA levels at 0, 0.5, 1, 4 and 24 h post-exposure with the maximum at 4 h post-exposure (25-fold for MUC5AC and 41-fold for IL-13). Furthermore, the protein levels of MUC5AC and IL-13 in BEP2D cells were significantly increased at different concentrations and different time courses exposed to SO2 derivatives, along with the maximum at 4 h post-exposure. These results lead to a conclusion that SO2 derivatives can increase the expressions of MUC5AC and IL-13 genes on the transcription and translation levels, and it suggests that SO2 derivatives can induce mucus over-production and inflammation responses in human bronchial epithelial cells and may have relations with asthma diseases. This might be one of the possible mechanisms that SO2 aggravates asthma disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alimam ZM, Piazza FM, Selby DM, Letwin N, Huang L, Rose MC (2000) Muc5/5acmucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol 22(3):253–260

    CAS  Google Scholar 

  • Bai J, Meng Z (2005) Effects of sulfur dioxide on apoptosis-related gene expressions in lungs from rats. Regul Toxicol Pharmacol 43(3):272–279

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal MN (2005) The role of genetics in the development of asthma and atopy. Curr Opin Allergy Clin Immunol 5(2):141–145

    Article  PubMed  CAS  Google Scholar 

  • Daviskas E, Anderson SD J (2006) Hyperosmolar agents and clearance of mucus in the diseased airway. Aerosol Med Spring 19(1):100–109

    Article  CAS  Google Scholar 

  • Derya Kilic (2003) The effects of ageing and sulfur dioxide inhalation exposure on visual-evoked potentials, antioxidant enzyme systems, and lipid-peroxidation levels of the brain and eye. Neurotoxicol Teratol 25:587–598

    Article  PubMed  CAS  Google Scholar 

  • Rogers DF (2004) Airway mucus hypersecretion in asthma: an undervalued pathology? Curr Opin Pharmacol 4(3):241–250

    Article  PubMed  CAS  Google Scholar 

  • Ferris Jr BG, Burgess WA, Worcester J (1967) Prevalence of chronic respiratory disease in a pulp mill and a paper mill in the United States. Br J Ind Med 24:26–37

    PubMed  Google Scholar 

  • Huang YC, Leyko B, Frieri M (2005) Effects of omalizumab and budesonide on markers of inflammation in human bronchial epithelial cells. Ann Allergy Asthma Immunol 95(5):443–451

    Article  PubMed  CAS  Google Scholar 

  • Humbert M, Durham SR, Kimmitt P, Powell N, Assoufi B, Pfister R, Menz G, Corrigan CJ (1997) Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and non-atopic subjects with asthma. J Allergy Clin Immunol 99(5):657–665

    Article  PubMed  CAS  Google Scholar 

  • Glasser M, Greenburg L, Field F (1967) Mortality and morbidity during a period of high levels of air pollution. New York Nov. 23 to 25, 1966. Arch Environ Health 15:684–694

    PubMed  CAS  Google Scholar 

  • Grella E, Paciocco G, Caterino U, Mazzarella G (2002) Respiratory function and atmospheric pollution. Monaldi Arch Chest Dis 57(3–4):196–199

    PubMed  CAS  Google Scholar 

  • Izuhara K, Umeshita-Suyama R, Akaiwa M, Shirakawa T, Deichmann KA, Arima K, Hamasaki N, Hopkin JM (2000) Recent advances in understanding how interleukin-13 signals are involved in the pathogenesis of bronchial asthma. Arch Immunol Ther Exp 48:505–512

    CAS  Google Scholar 

  • John V, Fahy (2001) Remodeling of the Airway Epithelium in Asthma. Am J Respir Crit Care Med 64(10):S46-S51

    Google Scholar 

  • Knowles M, Boucher R (2002) Mucus clearance as the primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–577

    Article  PubMed  CAS  Google Scholar 

  • Kotsimbos TC, Ernst P, Hamid QA (1996) Interleukin-13 and interleukin-4 are coexpressed in atopic asthma. Proc Assoc Am Physicians 108:368–373

    PubMed  CAS  Google Scholar 

  • Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Erle DJ (2002 ) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8:885–889

    PubMed  CAS  Google Scholar 

  • Lave LB, Liskin EP (1970) Air pollution and human health. Science 169:723–733

    Article  PubMed  CAS  Google Scholar 

  • Leonard B, Bacharier MD, Raif S, Geha MD (2000) Molecular mechanisms of IgE regulation. J Allergy Clin Immunol 105(2):547–558

    Article  Google Scholar 

  • Linn WS, Avol EL, Peng R, Shamoo DA, Hackney JD (1987) Replicated dose-response study of sulfur dioxide effects in normal, atopic and asthmatic volunteers. Am Rev Respir Dis 136:1127–1134

    PubMed  CAS  Google Scholar 

  • Meng Z (2003) Oxidative damage of sulfur dioxide on various organs of mice: sulfur dioxide is a systemic oxidative damage agent. Inhal Toxicol 15:181–195

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Qin G, Zhang B, Bai J (2004) DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 19(6):465–468

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Liu Y, Wu D (2005) Effect of sulfur dioxide inhalation on cytokine levels in lungs and serum of mice. Inhal Toxicol 17(6):303–307

    Article  PubMed  CAS  Google Scholar 

  • Morcillo EJ, Cortijo J (2006) Mucus and MUC in asthma. Curr Opin Pulm Med 12(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Pourazar J, Frew AJ, Blomberg A, Helleday R, Kelly FJ, Wilson S, Sandstrom T (2004) Diesel exhaust exposure enhances the expression of IL-13 in the bronchial epithelium of healthy subjects. Respir Med 98(9):821–825

    Article  PubMed  Google Scholar 

  • Pathmanathan S, Krishna M T, Blomberg A, Helleday R, Kelly FJ, Sandström T, Holgate ST, Frew AJ (2003) Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human airways. Occup Environ Med 60:892–896

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Meng Z (2005) Effect of sulfur dioxide inhalation on CYP1A1 and CYP1A2 in rat liver and lung. Toxicol Lett 160:34–42

    Article  PubMed  CAS  Google Scholar 

  • Qin G, Meng Z (2006) The expressions of protooncogenes and CYP1A in lungs of rats exposed to sulfur dioxide and benzo(a)pyrene. Regul Toxicol Pharmacol 45:36–43

    Article  PubMed  CAS  Google Scholar 

  • Shapiro R (1977) Genetic effects of bisulfite (sulfur dioxide). Nutat Res 38:149–176

    Google Scholar 

  • Smirnova MG, Birchall JP, Pearson JP (2000) TNF-ALPHA in the regulation of MUC5AC secretion: some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine 12(11):1732–1736

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi S, Miyata Y, Masumoto Y, Ishibashi Y, Matsuzawa S, Harano N, Tsuru K, Imai S (2004) Reduced airway inflammation and remodeling in parallel with mucin 5AC protein expression decreased by S-carboxymethylcysteine, a mucoregulant, in the airways of rats exposed to sulfur dioxide. Int Arch Allergy Immunol 134(4):273–280

    Article  PubMed  CAS  Google Scholar 

  • Tseng RY, Li CK (1990) Low level atmospheric sulfur dioxide pollution and childhood asthma. Ann Allergy 65(5):379–383

    PubMed  CAS  Google Scholar 

  • Velden VH, Versnel HF (1998) Bronchial epithelium: morphology, function and pathophysiology in asthma. Eur Cytokine Netw 9:585–597

    PubMed  CAS  Google Scholar 

  • Wills-Karp M (2000) Murine models of asthma in understanding immune dysregulation in human asthma. Immunopharmacology 48(3):263–268

    Article  PubMed  CAS  Google Scholar 

  • Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben T Y, Karp C L, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grant 20677035 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Meng, Z. Effects of SO2 derivatives on expressions of MUC5AC and IL-13 in human bronchial epithelial cells. Arch Toxicol 81, 867–874 (2007). https://doi.org/10.1007/s00204-007-0212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0212-7

Keywords

Navigation