Skip to main content

Advertisement

Log in

Differential role of epigenetic modulators in malignant and normal stem cells: a novel tool in preclinical in vitro toxicology and clinical therapy

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Adult stem cells are primitive cells that undergo asymmetric division, thereby giving rise to one clonogenic, self-renewing cell and one cell able to undergo multipotent differentiation. Disturbance of this controlled process by epigenetic alterations, including imbalance of histone acetylation/histone deacetylation and DNA methylation/demethylation, may result in uncontrolled growth, formation of self-renewing malignant stem cells and eventually cancer. In view of this notion, several epigenetic modulators, in particular those with histone deacetylase inhibiting activity, are currently being tested in phase I and II clinical trials for their promising chemotherapeutic properties in cancer therapy. As chromatin modulation is also involved in regulation of differentiation, normal development, embryonic and adult stem cell functions and maintenance of their plasticity during embryonic organogenesis, the question can be raised whether predestined cell fate can be modified through epigenetic interference. And if so, could this strategy enforce adult stem cells to differentiate into different types of functional cells? In particular, functional hepatocytes seem important for preclinical toxicity screening of candidate drugs. This paper reviews the potential use and relevance of epigenetic modifiers, including inhibitors of histone deacetylases and DNA methyltransferases (1) to change cell fate and ‘trans’differentiate normal adult stem cells into hepatocyte-like cells and (2) to cure disorders, caused by uncontrolled growth of malignant stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AzaC:

decitabine, 5-Aza-2′-deoxycytidine

C/EBP:

CCAAT enhancer binding protein

CYP:

Cytochrome P450

DMSO:

Dimethylsulphoxide

DNMT:

DNA methyltransferases

ES:

Embryonic stem cells

HSC:

Haematopoietic stem cells

HNF:

Hepatocyte nuclear factor

HAT(s):

Histone acetyltransferase(s)

HDAC(s):

Histone deacetylase(s)

LETFs:

Liver-enriched transcription factors

MSC:

Mesenchymal stem cells

NCEs:

New chemical entities

TSA:

Trichostatin A

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    PubMed  CAS  Google Scholar 

  • Alison MR, Lovell MJ (2005) Liver cancer: the role of stem cells. Cell Prolif 38:407–421

    PubMed  CAS  Google Scholar 

  • Alison MR, Vig P, Russo F, Bigger BW, Amofah E, Themis M, Forbes S (2004) Hepatic stem cells: from inside and outside the liver? Cell Prolif 37:1–21

    PubMed  CAS  Google Scholar 

  • Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA, Hoffman R (2006) Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 34:140–149

    PubMed  CAS  Google Scholar 

  • Ashraf SI, Ip YT (1998) Transcriptional control: repression by local chromatin modification. Curr Biol 8:R683–R686

    PubMed  CAS  Google Scholar 

  • Behbod F, Rosen JM (2004) Will cancer stem cells provide new therapeutic targets? Carcinogenesis 26:703–711

    PubMed  Google Scholar 

  • Bickenbach JR, Stern MM, Grinnell KL, Manuel A, Chinnathambi S (2006) Epidermal stem cells have the potential to assist in healing damaged tissues. J Investig Dermatol Symp Proc 11:118–23

    PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    PubMed  CAS  Google Scholar 

  • Bonnet D (2005) Normal and leukaemic stem cells. Br J Haematol 130:469–479

    PubMed  CAS  Google Scholar 

  • Bort R, Gomez-Lechon MJ, Castell JV, Jover R (2004) Role of hepatocyte nuclear factor 3 gamma in the expression of human CYP2C genes. Arch Biochem Biophys 426:63–72

    PubMed  CAS  Google Scholar 

  • Burkert J, Wright NA, Alison MR (2006) Stem cells and cancer: an intimate relationship. J Pathol 209:287–297

    PubMed  CAS  Google Scholar 

  • Castell JV, Jover R, Bort R, Gomez-Lechon MJ (1998) The challenge of using hepatic cell using cell lines for drug metabolism studies. In: Proceedings of COST B1 European symposium on the prediction of drug metabolism in man: progress and problems, European Commission, Luxembourg, pp 77–92

  • Cerny J, Quesenberry PJ (2004) Chromatin remodeling and stem cell theory of relativity. J Cell Physiol 201:1–16

    PubMed  CAS  Google Scholar 

  • Chiba T, Yokosuka O, Fukai K, Kojima H, Tada M, Arai M, Imazeki F, Saisho H (2004) Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology 66:481–491

    PubMed  CAS  Google Scholar 

  • Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251

    PubMed  CAS  Google Scholar 

  • Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS (2005) Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem 96:533–542

    PubMed  CAS  Google Scholar 

  • Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS (2002) Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 9:279–289

    PubMed  CAS  Google Scholar 

  • Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 126:1459–1468

    PubMed  CAS  Google Scholar 

  • Dai Y, Rahmani M, Dent P, Grant S (2005) Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-κB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase1 activation. Mol Cell Biol 25:5429–5444

    PubMed  CAS  Google Scholar 

  • Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J (2004) Use and application of stem cells in toxicology. Toxicol Sci 79:214–223

    PubMed  CAS  Google Scholar 

  • De Felice L, Tatarelli C, Mascolo MG, Gregorj C, Agostini F, Fiorini R, Gelmetti V, Pascale S, Padula F, Petrucci MT, Arcese W, Nervi C (2005) Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65:1505–1513

    PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    PubMed  CAS  Google Scholar 

  • Emerson BM (2002) Specificity of gene regulation. Cell 109:267–270

    PubMed  CAS  Google Scholar 

  • Enright BP, Sung LY, Chang CC, Yang X, Tian XC (2005) Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine. Biol Reprod 72:944–948

    PubMed  CAS  Google Scholar 

  • Fawcett JW (1992) Spinal cord repair: future directions. Paraplegia 30:83–85

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    PubMed  CAS  Google Scholar 

  • Fiegel HC, Lange C, Kneser U, Lambrecht W, Zander AR, Rogiers X, Kluth D (2006) Fetal and adult liver stem cells for liver regeneration and tissue engineering. J Cell Mol Med 10:577–587

    PubMed  CAS  Google Scholar 

  • Fry CJ, Peterson CL (2002) Unlocking the gates to gene expression. Science 295:1847–1848

    PubMed  CAS  Google Scholar 

  • Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5:443–462

    PubMed  CAS  Google Scholar 

  • Guillouzo A (1998) Liver cell models in in vitro toxicology. Environ Health Perspect 106:511–531

    PubMed  CAS  Google Scholar 

  • Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, Lee HW (2000) Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 60:6068–6074

    PubMed  CAS  Google Scholar 

  • Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279:17063–17069

    PubMed  CAS  Google Scholar 

  • Henkens T, Papeleu P, Elaut G, Vinken M, Rogiers V, Vanhaecke T (2007) Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes. Toxicol Appl Pharmacol 218(1):64–71

    PubMed  CAS  Google Scholar 

  • Henningson CJ Jr, Stanislaus MA, Gewirtz AM (2003) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 111(Suppl 2):S745–S753

    PubMed  Google Scholar 

  • Herold C, Ganslmayer M, Ocker M, Hermann M, Geerts A, Hahn EG, Schuppan D (2002) The histone-deacetylase inhibitor trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 36:233–240

    PubMed  CAS  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK (2005) A distinct ‘side population’ of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4:203–205

    PubMed  CAS  Google Scholar 

  • Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in selfrenewal capacity. Nat Immunol 5:738–743

    PubMed  CAS  Google Scholar 

  • Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664

    PubMed  CAS  Google Scholar 

  • Hurtubise A, Momparler RL (2006) Effect of histone deacetylase inhibitor LAQ824 on antineoplastic action of 5-Aza-2′-deoxycytidine (decitabine) on human breast carcinoma cells. Cancer Chemother Pharmacol 58:618–625

    PubMed  CAS  Google Scholar 

  • Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P, Capogrossi MC, Gaetano C (2005) Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 96:501–508

    PubMed  CAS  Google Scholar 

  • Issa JP (2003) Decitabine. Curr Opin Oncol 15:446–451

    PubMed  CAS  Google Scholar 

  • Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Giordano A, Galderisi U (2004) Role of RB and RB2/P130 genes in marrow stromal stem cells plasticity. J Cell Physiol 200:201–212

    PubMed  CAS  Google Scholar 

  • Jover R, Bort R, Gomez-Lechon MJ, Castell JV (1998) Re-expression of C/EBPa induces CYP2B6 CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Lett 431:227–230

    PubMed  CAS  Google Scholar 

  • Kawamura T, Ono K, Morimoto T, Wada H, Hirai M, Hidaka K, Morisaki T, Heike T, Nakahata T, Kita T, Hasegawa K (2005) Acetylation of GATA-4 is involved in the differentiation of embryonic stem cells into cardiac myocytes. J Biol Chem 280:19682–19688

    PubMed  CAS  Google Scholar 

  • Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W, Klang M, Schwartz L, Richardson S, Rosa E, Drobnjak M, Cordon-Cordo C, Chiao JH (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9:3578–3588

    PubMed  CAS  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    PubMed  CAS  Google Scholar 

  • Krishnan RV, Muthusamy R, Sankar V (2001) Spinal cord injury repair research: a new combination treatment strategy. Int J Neurosci 108:201–207

    PubMed  CAS  Google Scholar 

  • Krug LM, Curley T, Schwartz L, Richardson S, Marks P, Chiao J, Kelly WK (2006) Potential role of histone deacetylase inhibitors in mesothelioma: clinical experience with suberoylanilide hydroxamic acid. Clin Lung Cancer 7:257–261

    Article  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626

    PubMed  CAS  Google Scholar 

  • Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci USA 95:3356–3361

    PubMed  CAS  Google Scholar 

  • Lagace DC, Nachtigal MW (2004) Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis. J Biol Chem 279:18851–18860

    PubMed  CAS  Google Scholar 

  • Lassar AB, Paterson BM, Weintraub H (1986) Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47:649–656

    PubMed  CAS  Google Scholar 

  • LeCluysse EL, Bullock PL, Parkinson A (1995) Strategies for restoration and maintenance of normal hepatic structure and function in long-term cultures of rat hepatocytes. Adv Drug Deliv Rev 22:133–186

    Google Scholar 

  • Lee JH, Hart SR, Skalnik DG (2004) Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38:32–38

    PubMed  CAS  Google Scholar 

  • Li H, Wu X (2004) Histone deacetylase inhibitor, Trichostatin A, activates p21WAF1/CIP1 expression through downregulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 324:860–867

    PubMed  CAS  Google Scholar 

  • Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165

    PubMed  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Scott MP, Zipursky SL, Darnell J (2003) In: Lodish H, Berk A, Matsudaira P, Kaiser CA, Scott MP, Zipursky SL, Darnell J (eds) Molecular cell biology. WH Freeman and Company, New York, p 101

  • Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345

    PubMed  CAS  Google Scholar 

  • Marks PA, Richonand VR, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    PubMed  CAS  Google Scholar 

  • Martinez-Jimenez CP, Gomez-Lechon MJ, Castell JV, Jover R (2005) Transcriptional regulation of the human hepatic CYP3A4: identification of a new distal enhancer region responsive to CCAAT/enhancer-binding protein beta isoforms (liver activating protein and liver inhibitory protein). Mol Pharmacol 67:2088–2101

    PubMed  CAS  Google Scholar 

  • McCulloch EA, Till JE (2005) Perspectives on the properties of stem cells. Nature Med 11:1026–1028

    PubMed  CAS  Google Scholar 

  • McGraw S, Robert C, Massicotte L, Sirard MA (2003) Quantification of histone acetyltransferase and histone deacetylase transcripts during early bovine embryo development. Biol Reprod 68:383–389

    PubMed  CAS  Google Scholar 

  • Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y, Hoffman R (2004) Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood 103:4102–4110

    PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    PubMed  CAS  Google Scholar 

  • Novak K (2004) Epigenetics changes in cancer cells. MedGenMed 6:17

    PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    PubMed  CAS  Google Scholar 

  • Pandolfi PP (2001a) In vivo analysis of the molecular genetics of acute promyelocytic leukemia. Oncogene 20:5726–5735

    CAS  Google Scholar 

  • Pandolfi PP (2001b) Histone deacetylases and transcriptional therapy with their inhibitors. Cancer Chemother Pharmacol 48(Suppl 1):S17–S19

    CAS  Google Scholar 

  • Pandolfi PP (2001c) Transcription therapy for cancer. Oncogene 20:3116–3127

    CAS  Google Scholar 

  • Papeleu P, Elaut G, Rogiers V, Vanhaecke T (2002) Cell cultures as in vitro tools for biotransformation studies. In: Pandalai (ed) Recent research developments in drug metabolism and disposition, vol 1. Transworld Research Network, Trivandrum, pp 199–234

  • Papeleu P, Loyer P, Vanhaecke T, Elaut G, Geerts A, Guguen-Guillouzo C, Rogiers V (2003) Trichostatin A induces differential cell cycle arrests but does not induce apoptosis in primary cultures of mitogen-stimulated rat hepatocytes. J Hepatol 39:374–382

    PubMed  CAS  Google Scholar 

  • Papeleu P, Vanhaecke T, Elaut G, Vinken M, Henkens T, Snykers S, Rogiers V (2005) Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Crit Rev Toxicol 35:363–378

    PubMed  CAS  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    PubMed  CAS  Google Scholar 

  • PCT/EP2004/0012134 (VUB-014-PCT-PRIO1; Stem cells) Differentiation of stem cells and stabilisation of phenotypical properties of primary cells. Applicant: VUB–inventors: Rogiers V, Snykers S, Papeleu P, Vanhaecke T, Vinken M, Elaut G, Henkens T

  • PCT/EP2006/005622 Differentiation of cells. Applicant: VUB–inventors: Rogiers V, Snykers S, Papeleu P, Vanhaecke T, Vinken M, and Henkens T

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    PubMed  CAS  Google Scholar 

  • Pietrobono R, Pomponi MG, Tabolacci E, Oostra B, Chiurazzi P, Neri G (2002) Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res 30:3278–3285

    PubMed  CAS  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    PubMed  CAS  Google Scholar 

  • Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA (2003) The new stem cell biology: something for everyone. Mol Pathol 56:86–96

    PubMed  CAS  Google Scholar 

  • Ragan I (2006) The innovative medicines initiative: a proposal with implications for the 3R’s. NC3Rs, London

  • Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK (2003) Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12(1):1–11

    PubMed  Google Scholar 

  • Rodriguez-Antona C, Donato MT, Boobis A, Edwards RJ, Watts PS, Castell JV, Gomez-Lechon MJ (2002) Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 32:505–520

    PubMed  CAS  Google Scholar 

  • Rodriguez-Antona C, Bort R, Jover R, Tindberg N, Ingelman-Sundberg M, Gomez-Lechon MJ, Castell JV (2003) Transcriptional regulation of human CYP3A4 basal expression by CCAAT enhancer-binding protein alpha and hepatocyte nuclear factor-3 gamma. Mol Pharmacol 63(5):1180–1189

    PubMed  CAS  Google Scholar 

  • Rogiers V, Vercruysse A (1998) Hepatocyte cultures in drug metabolism and toxicological research and testing. Methods Mol Biol 107:279–294

    PubMed  CAS  Google Scholar 

  • Rosenthal N (2003) Prometheus’s vulture and the stem-cell promise. N Engl J Med 349:267–274

    PubMed  Google Scholar 

  • Rossig L, Urbich C, Bruhl T, Dernbach E, Heeschen C, Chavakis E, Sasaki K, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S (2005) Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 201:1825–1835

    PubMed  Google Scholar 

  • Rueff J, Chiapella C, Chipman JK, Darroudi F, Silva ID, Duverger-van Bogaert M, Fonti E, Glatt HR, Isern P, Laires A, Leonard A, Llagostera M, Mossesso P, Natarajan AT, Palitti F, Rodrigues AS, Schinoppi A, Turchi G, Werle-Schneider G (1996) Development and validation of alternative metabolic systems for mutagenicity testing in short-term assays. Mutat Res 353:151–176

    PubMed  Google Scholar 

  • Ruter B, Wijermans PW, Lubbert M (2004) DNA methylation as a therapeutic target in hematologic disorders: recent results in older patients with myelodysplasia and acute myeloid leukemia. Int J Hematol 80:128–135

    PubMed  Google Scholar 

  • Sarg B, Helliger W, Talasz H, Koutzamani E, Lindner HH (2004) Histone H4 hyperacetylation precludes histone H4 lysine 20 trimethylation. J Biol Chem 279:53458–53464

    PubMed  CAS  Google Scholar 

  • Schmittwolf C, Kirchhof N, Jauch A, Durr M, Harder F, Zenke M, Muller AM (2005) In vivo haematopoietic activity is induced in neurosphere cells by chromatin-modifying agents. EMBO J 24:554–566

    PubMed  CAS  Google Scholar 

  • Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51:1–28

    PubMed  Google Scholar 

  • Seo MJ, Suh SY, Bae YC, Jung JS (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 328:258–264

    PubMed  CAS  Google Scholar 

  • Sharma AD, Cantz T, Richter R, Eckert K, Henschler R, Wilkens L, Jochheim-Richter A, Arseniev L, Ott M (2005) Human cord blood stem cells generate human cytokeratin 18-negative hepatocyte-like cells in injured mouse liver. Am J Pathol 167:555–564

    PubMed  CAS  Google Scholar 

  • Sharma NS, Shikhanovich R, Schloss R, Yarmush ML (2006) Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype. Biotechnol Bioeng 94(6):1053–1063

    PubMed  CAS  Google Scholar 

  • Sharpless NE, De Pinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    PubMed  CAS  Google Scholar 

  • Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    PubMed  CAS  Google Scholar 

  • Snykers S, Vanhaecke T, Papeleu P, Henkens T, Vinken M, Elaut G, Van Riet I, Rogiers V (2006a) In vitro multipotency of human bone marrow (mesenchymal) stem cells. ALTEX 23:400–405

    Google Scholar 

  • Snykers S, Vanhaecke T, Papeleu P, Luttun A, Jiang Y, Vander Heyden Y, Verfaillie C, Rogiers V (2006b) Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells. Toxicol Sci 94(2):330–341

    CAS  Google Scholar 

  • Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Chen Y, Yamatsuji T, Tanaka N, Kobayashi N (2006) Differentiation of human embryonic stem cells to hepatocytes using deleted variant of HGF and poly-amino-urethane-coated nonwoven polytetrafluoroethylene fabric. Cell Transplant 15(4):335–341

    PubMed  Google Scholar 

  • Talens-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gomez-Lechon MJ (2006) Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 12:5834–5845

    PubMed  CAS  Google Scholar 

  • Tang XP, Zhang M, Yang X, Chen LM, Zeng Y (2006) Differentiation of human umbilical cord blood stem cells into hepatocytes in vivo and in vitro. World J Gastroenterol 12:4014–4019

    PubMed  CAS  Google Scholar 

  • Teramoto K, Asahina K, Kumashiro Y, Kakinuma S, Chinzei R, Shimizu-Saito K, Tanaka Y, Teraoka H, Arii S (2005) Hepatocyte differentiation from embryonic stem cells and umbilical cord blood cells. J Hepatobiliary Pancreat Surg 12:196–202

    PubMed  Google Scholar 

  • Terranova R, Sauer S, Merkenschlager M, Fisher AG (2005) The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res 310:344–356

    PubMed  CAS  Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418

    PubMed  CAS  Google Scholar 

  • Vanhaecke T, Henkens T, Kass GE, Rogiers V (2004a) Effect of the histone deacetylase inhibitor trichostatin A on spontaneous apoptosis in various types of adult rat hepatocyte cultures. Biochem Pharmacol 68:753–760

    CAS  Google Scholar 

  • Vanhaecke T, Papeleu P, Elaut G, Rogiers V (2004b) Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem 11:1629–1643

    CAS  Google Scholar 

  • Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5:245–253

    PubMed  Google Scholar 

  • Victor M, Bei Y, Gay F, Calvo D, Mello C, Shi Y (2002) HAT activity is essential for CBP-1-dependent transcription and differentiation in Caenorhabditis elegans. EMBO Rep 3:50–55

    PubMed  CAS  Google Scholar 

  • Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7:971–976

    PubMed  CAS  Google Scholar 

  • Vinken M, Henkens T, Vanhaecke T, Papeleu P, Geerts A, Van Rossen E, Chipman JK, Meda P, Rogiers V (2006) Trichostatin A enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol Sci 91:484–492

    PubMed  CAS  Google Scholar 

  • Virchow R (1855) Editorial. Archiv fuer pathologische Anatomie und Physiologie und fuer klinische Medezin 8:3–39

    Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2)

  • Yamazaki S, Miki K, Hasegawa K, Sata M, Takayama T, Makuuchi M (2003) Sera from liver failure patients and a demethylating agent stimulate transdifferentiation of murine bone marrow cells into hepatocytes in coculture with nonparenchymal liver cells. J Hepatol 39:17–23

    PubMed  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vitro and in vivo by trichostatin A. Biol Chem 265:17174–17179

    CAS  Google Scholar 

  • Zhou Q, Melkoumian ZK, Lucktong A, Moniwa M, Davie JR, Strobl JS (2000) Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem 275:35256–35263

    PubMed  CAS  Google Scholar 

  • Zhuge J, Yu YN, Wu XD (2004) Stable expression of human cytochrome P450 2D6*10 in HepG2 cells. World J Gastroenterol 10:234–237

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a PhD grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) and grants from the Research Council (OZR) of the Vrije Universiteit Brussel, Belgium. The project is also a part of the EU FP6 project, Liintop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Snykers.

Additional information

Sarah Snykers is a doctoral research fellow of the Vrije Universiteit Brussel (VUB), Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snykers, S., Vinken, M., Rogiers, V. et al. Differential role of epigenetic modulators in malignant and normal stem cells: a novel tool in preclinical in vitro toxicology and clinical therapy. Arch Toxicol 81, 533–544 (2007). https://doi.org/10.1007/s00204-007-0195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0195-4

Keywords

Navigation