Skip to main content

Advertisement

Log in

Non-destructive micromethod for MRP1 functional assay in human lung tumor cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Defense against toxic endo- and xenobiotics is a major concern of all living species and ABC transporters play a vital role in this defense system. Multidrug resistance associated proteins 1 (MRP1) is a cellular detoxifying factor supposed to transport a wide range of compounds across cell membranes either as GSH conjugates or as co-transport accompanying glutathione transposition. The cellular localization of MRP1 is a determining factor whether the transport function can take place. In this study we have undertaken experiments on the transport activity of MRP1 in cultured human lung tumor cells in order to check whether MRP1 is expressed as a functionally active protein. For this purpose we have adapted a quantitative fluorescence imaging assay to conditions where a small number of attached cells should be repeatedly measured by a non-destructive method. In cultured A549, H358 and H322 cells MRP1 is located in the cell membrane as observed by immunocytochemistry. Efflux of 5,6-carboxy-2′-7′-dichloro-fluorescein (CDF) from lung cells was sensitive toward the MRP1 inhibitor MK571 while verapamil had no effect. On the other hand, efflux of Rhodamin 123, a Pgp-glycoprotein substrate, from lung cells reacted to inhibition by verapamil, while MK571 had no effect. Modulation of glutathion content of lung cells by N-acetyl cystein and buthionine sulfoximine shifted CDF efflux toward higher or lower rates, respectively. These experiments confirm that MRP1 function can be followed in the attached cells in vitro under non-toxic concentrations of the substrates without the need to harvest and destroy the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bai J, Lai L, Yeo HC, Goh BC, Tan TM (2004) Multidrug resistance protein 4 (MRP4/ABCC4) mediates efflux of bimane-glutathione. Int J Biochem Cell Biol 36:247–257

    Article  PubMed  CAS  Google Scholar 

  • Benderra Z, Trussardi A, Morjani H, Villa AM, Doglia SM, Manfait M (2000) Regulation of cellular glutathione modulates nuclear accumulation of daunorubicin in human MCF7 cells overexpressing multidrug resistance associated protein. Eur J Cancer 36:428–434

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins (Review). J Natl Cancer Inst 92:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Broxterman HJ, Giaccone G, Lankelma J (1995) Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr Opin Oncol 7:532–540

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Carystinos GD, Batist G (1998) Potential for selective modulation of glutathione in cancer chemotherapy. Chem Biol Interact 111–112:263–275

    Article  PubMed  Google Scholar 

  • Cole SP, Deeley RG (1998) Multidrug resistance mediated by the ATP-binding cassette transporter protein MRP. Bioessays 20:931–940

    Article  PubMed  CAS  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  PubMed  CAS  Google Scholar 

  • Cotgreave IA (1997) N-acetylcysteine: pharmacological considerations and experimental and clinical applications (review). Adv Pharmacol 38:205–227

    Article  PubMed  CAS  Google Scholar 

  • Eijdems EW, De Haas M, Coco-Martin JM, Ottenheim, CP, Zaman GJ, Dauwerse HG, Breuning MH, Twentyman PR (1995) Mechanisms of MRP over-expression in four human lung-cancer cell lines and analysis of the MRP amplicon. Int J Cancer 60:676–684

    Article  PubMed  CAS  Google Scholar 

  • Evers R, Zaman GJ, van Deemter L, Jansen H, Calafat J, Oomen LC, Oude Elferink RP, Borst P, Schinkel AH (1996) Basolateral localization and export activity of the human multidrug resistance-associated protein in polarized pig kidney cells. J Clin Invest 97:1211–1218

    PubMed  CAS  Google Scholar 

  • Flens MJ, Zaman GJ, van der Valk P, Izquierdo MA, Schroeijers AB, Scheffer GL, van der Groep P, de Haas M, Meijer CJ, Scheper RJ (1996) Tissue distribution of the multidrug resistance protein. Am J Pathol 148:1237–1247

    PubMed  CAS  Google Scholar 

  • Foth H (1995) Role of the lung in accumulation and metabolism of xenobiotic compounds- implications for chemically induced toxicity. Crit Rev Toxicol 25:165–205

    Article  PubMed  CAS  Google Scholar 

  • Gekeler V, Ise W, Sanders KH, Ulrich WR, Beck J (1995) The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. Biochem Biophys Res Commun 208:345–352

    Article  PubMed  CAS  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  PubMed  CAS  Google Scholar 

  • Gottesmann MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter (Review). Annu Rev Biochem 62:385–427

    Article  Google Scholar 

  • Haimeur A, Conseil G, Deeley RG, Cole SPC (2004) The MRP-Related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation (review). Curr Drug Metabol 5:21–53

    Article  CAS  Google Scholar 

  • Homolya L, Varadi A, Sarkadi B(2003) Multidrug resistance associated proteins: export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17:103–114

    PubMed  CAS  Google Scholar 

  • Jedlitschky G, Leier I, Buchholz U, Center M, Keppler D (1994) ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein. Cancer Res 54:4833–4836

    PubMed  CAS  Google Scholar 

  • Jurima-Romet M, Huang HS, Paul CJ, Thomas BH (1991) Enalapril cytotoxicity in primary cultures of rat hepatocytes. II. Role of glutathione. Toxicol Lett 58:269–277

    Article  PubMed  CAS  Google Scholar 

  • Keppler D (1999) Export pumps for glutathione S-conjugates. Free Radic Biol Med 27:985–991

    Article  PubMed  CAS  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    Article  PubMed  CAS  Google Scholar 

  • Lampidis TJ, Munck JN, Krishan A, Tapiero H (1985) Reversal of resistance to rhodamine 123 in adriamycin-resistant Friend leukemia cells. Cancer Res 45:2626–2631

    PubMed  CAS  Google Scholar 

  • Laupeze B, Amiot L, Courtois A, Vernhet L, Drenou B, Fauchet R, Fardel O (1999) Use of the anionic dye carboxy-2’,7’-dichlorofluorescein for sensitive flow cytometric detection of multidrug resistance-associated protein activity. Int J Oncol 15:571–576

    PubMed  CAS  Google Scholar 

  • Lehmann T, Kohler C, Weidauer E, Taege C, Foth H (2001) Expression of MRP1 and related transporters in human lung cells in culture. Toxicology 167:59–72

    Article  PubMed  CAS  Google Scholar 

  • Lewandowicz GM, Britt P, Elgie AW, Williamson CJ, Coley HM, Hall AG, Sargent JM (2002) Cellular glutathione content, in vitro chemoresponse, and the effect of BSO modulation in samples derived from patients with advanced ovarian cancer. Gynecol Oncol 85:298–304

    Article  PubMed  CAS  Google Scholar 

  • Loe DW, Deeley RG, Cole SP (1998) Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res 58:5130–5136

    PubMed  CAS  Google Scholar 

  • Mao Q, Deeley RG, Cole SPC (2000) Functional reconstruction of substrate transport by purified multidrug resistance protein MRP1 (ABCC1) in phospholipid vesicles. J Biol Chem 275:34166–34172

    Article  PubMed  CAS  Google Scholar 

  • Newton GL, Dorian R, Fahey RC (1981) Analysis of biological thiols: derivatization with monobromobimane and separation by reverse-phase high-performance liquid chromatography. Anal Biochem 114:383–387

    Article  PubMed  CAS  Google Scholar 

  • Neyfakh AA (1988) Use of fluorescent dyes as molecular probes for the study of multidrug resistance. Exp Cell Res 174:168–176

    Article  PubMed  CAS  Google Scholar 

  • Rappa G, Finch RA, Sartorelli AC, Lorico A (1999) New insights into the biology and pharmacology of the multidrug resistance protein (MRP) from gene knockout models. Biochem Pharmacol 58:557–562

    Article  PubMed  CAS  Google Scholar 

  • Salerno M, Garnier-Suillerot A (2001) Kinetics of glutathione and daunorubicin efflux from multidrug resistance protein overexpressing small-cell lung cancer cells. Eur J Pharmacol 421:1–9

    Article  PubMed  CAS  Google Scholar 

  • Torky A-RW, Stehfest E Raemisch A, Viehweger K, Täge C, Foth H (2005) Immuno-histochemical detection of MRPs in human lung cells in culture. Toxicol Lett 207:437–450

    CAS  Google Scholar 

  • Versantvoort CHM, Broxterman HJ, Bagrij T, Scheper RJ, Twentyman PR (1995) Regulation by glutathione of drug transport in multidrug-resistant human lung tumor cell lines overexpressing multidrug resistance-associated protein. Br J Cancer 72:82–89

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hedwig Grygier, Thea Hensel Dagmar Funk, and Tina Roeder for excellent technical assistance. Research explained in this article was supported by External Research program of Philip Morris Incorporated and Deutsche Forschungsgesellschaft (DFG) Graduiertenkolleg (A. Torky). The experiments comply with the current laws in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Foth.

Additional information

Abdelrahman Torky and Ekkehard Stehfest have contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stehfest, E., Torky, A., Glahn, F. et al. Non-destructive micromethod for MRP1 functional assay in human lung tumor cells. Arch Toxicol 80, 125–133 (2006). https://doi.org/10.1007/s00204-005-0017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-005-0017-5

Keywords

Navigation