Skip to main content
Log in

Changes in expression of bcl-2 and bax in Syrian hamster embryo (SHE) cells exposed to ZnCl2

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Zinc is involved in many physiological processes and plays a critical role in functional and structural cells. Zinc at concentrations ranging from 100 to 150 μmol L−1 has been shown to induce morphological transformation of Syrian hamster embryo (SHE) cells. At these concentrations, zinc inhibited apoptosis in SHE cells. The objective of this study was to elucidate the mechanisms of action of zinc on the apoptotic pathway. Effects of 100 and 150 μmol L−1 ZnCl2 on the expression of two members of the Bcl-2 family of proteins and on the transcription factor c-Myc in SHE cells was investigated using RT-PCR. No effect on the proto-oncogene c-myc was observed. Up-regulation of bcl-2 expression was found and bax expression was reduced. These changes have been corroborated by immunoblotting. Effects of Zn2+ on bcl-2/bax ratio were confirmed in apoptotic camptothecin-treated SHE cells. Cloned and sequenced cDNAs obtained from RT-PCR amplifications allowed us to check the RT-PCR products encoded the expected proteins. This study demonstrated that zinc acts in the early phases of the apoptotic process by modification of the bcl-2/bax ratio in normal and apoptotic SHE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10A–B
Fig. 11A–B
Fig. 12A–B

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Alexandre S, Rast C, Maire MA, Orfila L, Vasseur P (2003) ZnCl2 induces Syrian hamster embryo (SHE) cell transformation. Toxicol Lett 142:77–87

    Article  CAS  PubMed  Google Scholar 

  • Alexandre S, Rast C, Nguyen-Ba G, Vasseur P (2000) Detection of apoptosis induced by topoisomerase inhibitors and serum deprivation in Syrian hamster embryo cells. Exp Cell Res 255:30–39

    Article  CAS  PubMed  Google Scholar 

  • Alexandre S, Rast C, Nguyen-Ba G, Vasseur P (2002) ZnCl2 prevents c-myc repression and apoptosis in serum-deprived Syrian hamster embryo cells. Environ Toxicol Pharmacol 11:191–196

    Article  CAS  Google Scholar 

  • Antonsson B, Conti F, Ciavatta AM, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    Article  CAS  PubMed  Google Scholar 

  • Barrett J, Crawford DD, Mixter LO, Schechtmen LM, Ts’o POP, Pollack R (1979) Correlation of in vitro growth properties and tumorigenicity of Syrian hamster cell lines. Cancer Res 39:1507–1510

    Google Scholar 

  • Berwald Y, Sachs L (1963) In vitro cell transformation with chemical carcinogens. Nature 200:1182–1184

    CAS  PubMed  Google Scholar 

  • Bessi H, Rast C, Nguyen-Ba G, Vasseur P (1994) Chlorothalonil promotes morphological transformation in hamster embryo cells but does not inhibit GAP junctional intercellular communication either in SHE cells or in the V79 cell line. Cancer J 7:248–253

    CAS  Google Scholar 

  • Bissonnette RP, Echeverri F, Mahboubi A, Green DR (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552–554

    Article  CAS  PubMed  Google Scholar 

  • Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647

    Article  CAS  PubMed  Google Scholar 

  • Brady HJ, Gil-Gomez G (1998) Bax. The pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol 30:647–650

    Article  CAS  PubMed  Google Scholar 

  • Cain K, Bratton SB, Cohen GM (2002) The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84:203–214

    Article  CAS  PubMed  Google Scholar 

  • Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G (2002) Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265:39–47

    Article  CAS  PubMed  Google Scholar 

  • Chai F, Truong-Tran AQ, Evdokiou A, Young GP, Zalewski PD (2000) Intracellular zinc depletion induces caspase activation and p21 Waf1/Cip1 cleavage in human epithelial cell lines. J Infect Dis 182:85–92

    Article  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  • Chimienti F, Seve M, Richard S, Mathieu J, Favier A (2001) Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 62:51–62

    Article  CAS  PubMed  Google Scholar 

  • Cohen JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132:38–42

    CAS  PubMed  Google Scholar 

  • Combes R, Balls M, Curren RD, Fischbach M, Fusenig N, Kirkland D, Lasne C, Landolph J, LeBoeuf RA, Marquardt H, McCormick J, Müller L, Rivedal E, Sabbioni E, Tanaka N, Vasseur P, Yamasaki H (1999) Cell transformation assay as predictors of human carcinogenicity, the reports and recommendations of ECVAM, workshop 39. ATLA 27:745–767

    Google Scholar 

  • Cosulich SC, Savory PJ, Clarke PR (1999) Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol 9:147–150

    Article  CAS  PubMed  Google Scholar 

  • DelBino G, Lassota P, Darzynkiewicz Z (1991) The S-phase cytotoxicity of camptothecin. Exp Cell Res 193:27–35

    CAS  PubMed  Google Scholar 

  • DiPaolo JA, Casto BC (1979) Quantitative studies of in vitro morphological transformation of Syrian hamster embryo by inorganic metal salts. Cancer Res 39:1008–1013

    CAS  PubMed  Google Scholar 

  • Dreosti IE (2001) Zinc and the gene. Mutat Res 475:161–167

    CAS  PubMed  Google Scholar 

  • Elias Z, Poirot O, Daniere MC, Terzetti F, Marande AM, Dzwigaj S, Pezerat H, Fenoglio I, Fubini B (1989) Cytotoxic and transforming effects of silica particles with different surface properties in Syrian hamster embryo (SHE) cells. Toxicol in Vitro 14:409–422

    Article  Google Scholar 

  • Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128

    Article  CAS  PubMed  Google Scholar 

  • Fukamachi Y, Karasaki Y, Sugiura T, Itoh H, Abe T, Yamaraura K, Higashi K (1998) Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Commun 246:364–369

    Article  CAS  PubMed  Google Scholar 

  • Ganju N, Eastman A (2003) Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemicals inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ, 10:652–661

    Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Holcik M, Gibson H, Korneluk RG (2001) XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6:253–261

    Article  CAS  PubMed  Google Scholar 

  • Jankowski-Hennig MA, Clegg MS, Daston GP, Rogers JM, Keen CL (2000) Zinc-deficient rat embryos have increased caspase 3-like activity and apoptosis. Biochem Biophys Res Commun 271:250–256

    Article  CAS  PubMed  Google Scholar 

  • Juin P, Hueber AO, Littlewood T, Evan G (1999) c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev 13:1367–1381

    CAS  PubMed  Google Scholar 

  • Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002

    Article  CAS  PubMed  Google Scholar 

  • Kerr JFR, Winterford CM, Harmon BV (1993) Apoptosis: its significance in cancer and cancer therapy. Cancer 73:2013–2026

    Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  • Larsen AK, Skladanowski A (1998) Cellular resistance to topoisomerase-targeted drugs: from uptake to cell death. Biochim Biophys Acta 1400:257–274

    CAS  PubMed  Google Scholar 

  • LeBoeuf RA, Kerckaert GA, Poiley JA, Raineri R (1989) An interlaboratory comparison of enhanced morphological transformation of Syrian hamster embryo cells cultured under conditions of reduced bicarbonate concentration and pH. Mutat Res 222:205–218

    CAS  PubMed  Google Scholar 

  • Nakatani T, Tawaramoto M, Kennedy DO, Kojima A, Matsui-Yuasa I (2000) Apoptosis induced by chelation of intracellular zinc is associated with depletion of cellular reduced glutathione level in rat hepatocytes. Chem Biol Interact 125:151–153

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448

    CAS  PubMed  Google Scholar 

  • Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. J Biol Chem 30:18530–18533

    Article  Google Scholar 

  • Pienta RJ, Poiley JA, Lebherz WB (1977) Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable in vitro bioassay for identifying diverse carcinogens. Int J Cancer 19:642–655

    CAS  PubMed  Google Scholar 

  • Prendergast GC (1999) Mechanisms of apoptosis by c-Myc. Oncogene 18:2967–2987

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6

    Article  CAS  PubMed  Google Scholar 

  • Seve M, Chimienti F, Favier A (2002) Role du zinc intracellulaire dans la mort cellulaire programmée: role of intracellular zinc in programmed cell death. Pathol Biol 50:212–221

    Article  CAS  PubMed  Google Scholar 

  • Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, Waalkes MP (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73:294–300

    Article  CAS  PubMed  Google Scholar 

  • Soucie EL, Annis MG, Sedivy J, Filmus J, Leber B, Andrews DW, Penn LZ (2001) Myc potentiates apoptosis by stimulating Bax activity at the mitochondria. Mol Cell Biol 21:4725–4736

    Article  CAS  PubMed  Google Scholar 

  • Sunderman FW (1995) The influence of zinc on apoptosis. Ann Clin Lab Sci 25:134–142

    CAS  PubMed  Google Scholar 

  • Tamura T, Sadakata N, Oda T, Muramatsu T (2002) Role of zinc ions in ricin-induced apoptosis in U937 cells. Toxicol Lett 132:141–151

    Article  CAS  PubMed  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Google Scholar 

  • Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315–330

    Article  CAS  PubMed  Google Scholar 

  • Tu A, Hallowell W, Pallota S, Sivak A, Lubet RA, Curren RD, Avery MD, Jones C, Sedita BA, Huberman E, Tennant R, Spalding J, Kouri RE (1986) An interlaboratory comparison of transformation in Syrian hamster embryo cells with model and coded chemicals. Environ Mutagen 8:77–98

    CAS  PubMed  Google Scholar 

  • Wyllie AH (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    CAS  PubMed  Google Scholar 

  • Wyllie AH (1992) Apoptosis and the regulation of cell numbers in normal and neoplasic tissues: an overview. Cancer Metastasis Rev 11:95–103

    CAS  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr P. Poupin for constructive discussions and Pr A. Hammond for assistance in revising the English form of this paper. They are grateful to Dr Methlin and his colleagues from the “Claude Bernard Hospital—Departement de Radiotherapie et de Chimiotherapie” for preparation of irradiated SHE cells. This study was funded by the French Ministry of Research and Direction for Prevention of Pollution and Environmental Risk of the Ministry of the Environment. The authors declare that the experiments comply with the current law in France and with safety requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Maire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maire, M.A., Rast, C., Pagnout, C. et al. Changes in expression of bcl-2 and bax in Syrian hamster embryo (SHE) cells exposed to ZnCl2. Arch Toxicol 79, 90–101 (2005). https://doi.org/10.1007/s00204-004-0611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0611-y

Keywords

Navigation