Skip to main content

Advertisement

Log in

Detection of acrolein–lysine adducts in plasma low-density lipoprotein and in aorta of cyclophosphamide-administered rats

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cyclophosphamide (CY) is an alkylating agent used for the treatment of various types of cancer and is also used as a potent immunosuppressant. Acrolein, a metabolite of CY is cytotoxic and has the ability to covalently bind with proteins in vitro to form acrolein–protein adducts. These protein adducts are considered to be putative markers of oxidative stress and cause damage to protein in aging, atherosclerosis and diabetes. We have, for the first time, detected acrolein–lysine adducts in plasma low-density lipoprotein (LDL) and in the aorta of CY-treated animals by agarose gel electrophoresis, immunoblot and immunohistochemical methods. The extent of lipid peroxidation caused by the metabolite acrolein in plasma LDL was also measured quantitatively by using high-performance liquid chromatography. These results confirm the role of acrolein–lysine adducts in the development of atherosclerosis or atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5a, b

Similar content being viewed by others

References

  • Arumugam N, Sivakumar V, Thanislass J, Devaraj H (1997) Effects of acrolein on rat liver antioxidant defense system. Indian J Exp Biol 35:1373–1374

    CAS  PubMed  Google Scholar 

  • Arumugam N, Sivakumar V, Thanislass J, Sadasivan Pillai K, Niranjali Devaraj S, Devaraj H (1999a) Acute pulmonary toxicity of acrolein in rats—underlying mechanism. Toxicol Lett 104:189–194

    Article  CAS  PubMed  Google Scholar 

  • Arumugam N, Thanislass J, Ragunath K, Niranjali Devaraj S, Devaraj H (1999b) Acrolein-induced toxicity—defective mitochondrial function as a possible mechanism. Arch Environ Contam Toxicol 36:373–376

    CAS  PubMed  Google Scholar 

  • Assruey AMS, Martins GJ, Moreira MEF, Brito GAC, Cavada BS, Ribeiro RA, Flores CA (1999) Prevention of cyclophosphamide-induced hemorrhagic cystitis by glucose-mannose binding plant lectins. J Urol 161:1988–1993

    Article  Google Scholar 

  • Berrigan MJ, Struck RF, Gurtoo HC (1987) Lipidperoxidation induced by cyclophospamide. Cancer Biochem Biophys 9:265–270

    CAS  Google Scholar 

  • Botta JA, Nelson LV, Weikel JH (1973) Acetylcysteine in the prevention of cyclophosphamide-induced cystitis in rats. J Natl Cancer Inst 51:1051–1058

    CAS  PubMed  Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    Article  CAS  PubMed  Google Scholar 

  • Chung BH, Wilkinson T, Geer JC, Segrest JP (1980) Preparative and quantitative isolation of plasmalipoprotein: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res 21:284–291

    CAS  PubMed  Google Scholar 

  • Cohen SM, Garland EM, John MSt, Okamura T, Smith RA (1992) Acrolein initiates rat urinary bladder carcinogenesis. Cancer Res 52:3577–3581

    CAS  PubMed  Google Scholar 

  • Cox PJ (1979) Cyclophosphamide cystitis—identification of acrolein as the causative agent. Biochem Pharmacol 28:2045–2049

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Lang J, Zadravec SZ, Slater F (1984) Detection of malonaldehyde by high-performance liquid chromatography. Methods Enzymol 105:318–328

    Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehyde. Free Radic Biol Med 11:81–128

    CAS  PubMed  Google Scholar 

  • Grinberg-Funes DJ, Sheldon C, Weiss M (1990) The use of prostaglandin F for the prophylaxis of cyclophosphamide-induced cystitis in rats. J Urol 144:1500–1504

    CAS  PubMed  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1987) Cyclophosphamide. In: Supplement 6. Genetic and related effects: an updating of selected IARC monographs from volume 1 to 42. IARC Press, Lyon, pp 196–205

    Google Scholar 

  • Laemmeli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Luce JK, Simons JA (1988) Efficacy of mesna in preventing further cyclophosphamide-induced hemorrhagic cystitis. Med Pediatr Oncol 16:372–374

    CAS  PubMed  Google Scholar 

  • Noble RP (1968) Electrophoretic separation of plasma lipoprotein in agarose gel. J Lipid Res 9:693–700

    CAS  PubMed  Google Scholar 

  • Philips ES, Sternberg SS, Cronin AP, Vidal PM (1961) Cyclophosphamide and urinary bladder toxicity. Cancer Res 21:1577–1589

    CAS  PubMed  Google Scholar 

  • Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR (1997) Modification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem J 322:317–325

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis J (1989) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Press, Cold Spring Harbor, chap18

    Google Scholar 

  • Satoh K, Yamada S, Koike Y, Igarashi Y, Toyokuni S, Kumano T, Takahata T, Hayakari M, Tsuchida S, Uchida K (1999) A 1-hour enzyme-linked immunosorbent assay for quantitation of acrolein-and hydroxynonenal-modified proteins by epitope-bound casein matrix method. Anal Biochem 270:323–328

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Osawa T, Hiai H, Toyokuni S (1995a) 4-hydroxy-2-nonenal-trapping ELISA: direct evidence for the release of a cytotoxic aldehyde from oxidized low density lipoproteins. Biochem Biophys Res Commun 212:1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Itakura K, Kawakishi S, Hiai H, Toyokuni S, Stadtman ER (1995b) Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch Biochem Biophys 324:241–248

    CAS  PubMed  Google Scholar 

  • Uchida K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki E (1998a) Acrolein is a product of lipidperoxidation reaction. J Biol Chem 273:16058–16066

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y, Suzuki D, Mijata T, Noguchi N, Niki E, Osawa T (1998b) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci USA 95:4882–4887

    CAS  PubMed  Google Scholar 

  • Vasavi H, Thangaraju M, Babu JR, Sachdanandam P (1998) The salubrious effects of ascorbic acid on cyclophosphamide instigated abnormalities in fibrosarcoma bearing rats. Cancer Biochem Biophys 16:71–83

    CAS  PubMed  Google Scholar 

  • Walker RD (1999) Cyclophosphamide induced hemorrhagic cystitis. J Urol 161:1747

    Article  CAS  PubMed  Google Scholar 

  • Yu LJ, Drewes P, Gustafsson K, Brain EGC, Hecht JED, Waxman DJ (1999) In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther 288:928–937

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our thanks to Dr. Koji Uchida (Laboratory of Food and Biodynamics and Laboratory of Molecular Bioregulation, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan) for providing the anti-acrolein modified lysine antibody for our research work. The experiments complied with the current laws and the Ethical Committee board of the country.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halagowder Devaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arikketh, D., Niranjali, S. & Devaraj, H. Detection of acrolein–lysine adducts in plasma low-density lipoprotein and in aorta of cyclophosphamide-administered rats. Arch Toxicol 78, 397–401 (2004). https://doi.org/10.1007/s00204-004-0556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0556-1

Keywords

Navigation