Skip to main content
Log in

Effect of organophosphorus hydrolysing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The reactivation of organophosphate (OP)-inhibited acetylcholinesterase (AChE) by oximes results inevitably in the formation of highly reactive phosphyloximes (POX), which may re-inhibit the enzyme. An impairment of net reactivation by stable POX was found with 4-pyridinium aldoximes, e.g. obidoxime, and a variety of OP compounds. In this study the effect of organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA) and diisopropylfluorophosphatase (DFPase) on obidoxime-induced reactivation of human acetylcholinesterase (AChE) inhibited by different OPs was investigated. Reactivation of paraoxon-, sarin-, soman- and VX-inhibited AChE by obidoxime was impaired by POX-induced re-inhibition whereas no deviation of pseudo first-order kinetics was observed with tabun, cyclosarin and VR. OPH prevented (paraoxon) or markedly reduced the POX-induced re-inhibition (VX, sarin, soman), whereas OPAA and DFPase were without effect. Additional experiments with sarin-inhibited AChE indicate that the POX hydrolysis by OPH was concentration-dependent. The activity of OP-inhibited AChE was not affected by OPH in the absence of obidoxime. In conclusion, OPH may be a valuable contribution to the therapeutic regimen against OP poisoning by accelerating the degradation of both the parent compound, OP, and the reaction product, POX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldridge WN, Reiner E (1972) Enzyme inhibitors as substrates—interactions of esterases with esters of organophosphorus and carbamic acids. North-Holland Publishing, Amsterdam

  • Ashani Y, Leader H, Rothschild N, Dosoretz C (1998) Combined effect of organophosphorus hydrolase and oxime on the reactivation rate of diethylphosphoryl–acetylcholinesterase conjugates. Biochem Pharmacol 55:159–168

    Article  CAS  PubMed  Google Scholar 

  • Ashani Y, Bhattacharjee AK, Leader H, Saxena A, Doctor BP (2003) Inhibition of cholinesterases with cationic phosphonyl oximes highlights distinctive properties of the charged pyridine groups of quaternary oxime reactivators. Biochem Pharmacol 66:191–202

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne B, Marrs TC (1992) Overview of the biological and clinical aspects of organophosphates and carbamates. In: Ballantyne B, Marrs TC (eds) Clinical and experimental toxicology of organophosphates and carbamates. Butterworth & Heinemann, Oxford, pp 3–14

  • Bismuth C, Inns RH, Marrs TC (1992) Efficacy, toxicity and clinical use of oximes in anticholinesterase poisoning. In: Ballantyne B Marrs TC (eds) Clinical and experimental toxicology of organophosphates and carbamates. Butterworth & Heinemann, Oxford, pp 555–577

  • de Jong LPA, Ceulen DI (1978) Anticholinesterase activity and rate of decomposition of some phosphylated oximes. Biochem Pharmacol 27:857–863

    PubMed  Google Scholar 

  • de Jong LPA, Wolring GZ (1978) Effect of 1-(AR)-alkyl-hydroxyiminomethyl-pyridinium salts on reactivation and aging of acetylcholinesterase inhibited ethyl dimethylphosphoramidocyanidate (tabun). Biochem Pharmacol 27:2229–2235

    Article  PubMed  Google Scholar 

  • de Jong LPA, Wolring GZ (1984) Stereospecific reactivation by some Hagedorn-oximes of acetycholinesterases from various species including man inhibited by soman. Biochem Pharmacol 33:1119–1125

    Article  PubMed  Google Scholar 

  • DeFrank JJ, Cheng TC (1991) Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J Bacteriol 173:1938–1943

    CAS  PubMed  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Anders V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Erdmann WD, Bosse I, Franke P (1965) Zur Resorption und Ausscheidung von Toxogonin nach intramuskulärer Injektion am Menschen. Dtsch Med Wochenschr 90:1436–1438

    CAS  Google Scholar 

  • Eyer P (1996) Optimal oxime dosage regimen, a pharmacokinetic approach. In: Szinicz L, Eyer P, Klimmek R (eds) Role of oximes in the treatment of anticholinesterase agent poisoning. Spektrum Akademischer Verlag, Heidelberg, pp 33–51

  • Hackley BE, Owens OO (1959) Preparation of O-(isopropylmethylphosphono)-4-formyl-1-methylpyridinium iodide oxime. J Org Chem 24:1120

    CAS  Google Scholar 

  • Hackley BE, Steinberg GM, Lamb JC (1959) Formation of potent inhibitors of AChE by reaction of pyridinaldoximes with isopropyl methylphosphonofluoridate (GB). Arch Biochem Biophys 80:211–214

    CAS  Google Scholar 

  • Hartleib J, Rüterjans H (2001) High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris. Protein Expr Purif 21:210–219

    Article  CAS  PubMed  Google Scholar 

  • Harvey B, Sellers DJ, Watts P (1984) The reactivation by oximes of phosphonylated acetylcholinesterase: the possible erroneous interpretation of reactivating potency. Biochem Pharmacol 33:3499–3501

    Article  CAS  PubMed  Google Scholar 

  • Harvey B, Scott RP, Sellers DJ, Watts P (1986) In vitro studies on the reactivation by oximes of phosphylated acetylcholinesterase-I. Biochem Pharmacol 35:737–744

    Article  CAS  PubMed  Google Scholar 

  • Kiderlen D, Worek F, Klimmek R, Eyer P (2000) The phosphoryl oxime-destroying activity of human plasma. Arch Toxicol 74:27–32

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Steinberg GM, Hackley BE (1964) Isopropyl methylphosphonylated bisquaternary oximes, powerful inhibitors of cholinesterase. Biochim Biophys Acta 89:174–176

    Article  CAS  PubMed  Google Scholar 

  • Leader H, Vincze A, Manisterski B, Rothschild N, Dosoretz C, Ashani Y (1999) Characterization of O,O-diethylphosphoryl oximes as inhibitors of cholinesterases and substrates of phosphotriesterases. Biochem Pharmacol 58:503–515

    CAS  PubMed  Google Scholar 

  • Lee EC (2003) Clinical manifestations of sarin nerve gas exposure. JAMA 290:659–662

    Article  PubMed  Google Scholar 

  • MacIlwain C (1993) Study proves Iraq used nerve gas. Nature 363:3

    CAS  PubMed  Google Scholar 

  • Marrs TC (1993) Organophosphate poisoning. Pharmacol Ther 58:51–66

    CAS  PubMed  Google Scholar 

  • Mulbry WJ, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and the protein. J Bacteriol 171:6740–6746

    CAS  PubMed  Google Scholar 

  • Nagao M, Takatori T, Matsuda Y, Nakajima M, Iwase H, Iwadate K (1997) Definitive evidence for the acute sarin poisoning diagnosis in the Tokyo subway. Toxicol Appl Pharmacol 144:198–203

    CAS  PubMed  Google Scholar 

  • Nenner M (1974) Phosphonylierte Aldoxime Hemmwirkung auf Acetylcholinesterase und hydrolytischer Abbau. Biochem Pharmacol 23:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Scaife JF (1959) Oxime reactivation studies of inhibited true and pseudo cholinesterase. Can J Biochem Physiol 37:1301–1311

    CAS  Google Scholar 

  • Schoene K (1973) Phosphonyloxime aus Soman: Bildung und Reaktion mit Acetylcholinesterase in vitro. Biochem Pharmacol 22:2997–3003

    Article  CAS  PubMed  Google Scholar 

  • Sidell FR (1992) Clinical considerations in nerve agent intoxication. In: Somani SM (ed) Chemical warfare agents. Academic Press, San Diego, pp 155–194

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128:215–228

    Article  CAS  PubMed  Google Scholar 

  • Thiermann H, Szinicz L, Eyer F, Worek F, Eyer P, Felgenhauer N, Zilker T (1999) Modern strategies in therapy of organophosphate poisoning. Toxicol Lett 107:233–239

    Article  CAS  PubMed  Google Scholar 

  • Volans AP (1996) Sarin: guidelines on the management of victims of a nerve gas attack. J Accid Emerg Med 13:202–206

    CAS  PubMed  Google Scholar 

  • Wilson IB, Ginsburg S (1955) A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim Biophys Acta 18:168–170

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Szinicz L (2000) Reaktivierung Nervenkampfstoff-gehemmter humaner Erythrozyten-Acetylcholinesterase und Butyrylcholinesterase mit Oximen—Einfluß von Enzymkonzentration und Plasmabestandteilen. Interim Report Project 07/94

  • Worek F, Eyer P, Szinicz L (1998a) Inhibition, reactivation and aging kinetics of cyclohexylmethylphosphonofluoridate-inhibited human cholinesterases. Arch Toxicol 72:580–587

    CAS  PubMed  Google Scholar 

  • Worek F, Widmann R, Knopff O, Szinicz L (1998b) Reactivating potency of obidoxime, pralidoxime, HI 6 and HLö 7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. Arch Toxicol 72:237–243

    CAS  PubMed  Google Scholar 

  • Worek F, Diepold C, Eyer P (1999a) Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics. Arch Toxicol 73:7–14

    CAS  PubMed  Google Scholar 

  • Worek F, Mast U, Kiderlen D, Diepold C, Eyer P (1999b) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90

    CAS  PubMed  Google Scholar 

  • Worek F, Eyer P, Kiderlen D, Thiermann H, Szinicz L (2000) Effect of human plasma on the reactivation of sarin-inhibited human erythrocyte acetylcholinesterase. Arch Toxicol 74:21–26

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Worek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herkenhoff, S., Szinicz, L., Rastogi, V.K. et al. Effect of organophosphorus hydrolysing enzymes on obidoxime-induced reactivation of organophosphate-inhibited human acetylcholinesterase. Arch Toxicol 78, 338–343 (2004). https://doi.org/10.1007/s00204-004-0547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0547-2

Keywords

Navigation