Skip to main content
Log in

Vanadyl sulfate can differentially damage DNA in human lymphocytes and HeLa cells

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Using the comet assay, we showed that vanadyl sulfate induced DNA damage in human normal lymphocytes and in HeLa cells. Vanadyl at 0.5 and 1 mM produced DNA single- and double-strand breaks (SSBs and DSBs) in lymphocytes, whereas in HeLa cells we observed only SSBs. Post-treatment of vanadyl-damaged DNA from lymphocytes with formamidopyrimidine-DNA glycosylase (Fpg), an enzyme recognizing oxidized purines, gave rise to a significant increase in the extent of DNA damage. A similar effect was observed in HeLa cells, but, using endonuclease III, we also detected oxidized pyrimidines in DNA of these cells. There were no differences in the extent of DNA damage in the lymphocytes and HeLa cells in the pH >13 and pH 12.1 conditions of the comet assay, which indicates that strand breaks, and not alkali-labile sites, contributed to the measured DNA damage. Study of DNA repair, determined in the comet assay as an ability of cells to decrease of DNA damage, revealed that HeLa cells retained the ability to repair vanadyl-damaged DNA induced at a ten-fold higher concentration than that in lymphocytes. Incubation of the cells with nitrone spin traps DMPO, POBN and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by vanadyl sulfate. The presence of vitamins A, C or E caused an increase of DNA damage in HeLa cells whereas in lymphocytes such an increase was observed only for vitamin C. Our data indicate that vanadyl sulfate can be genotoxic for normal and cancer cells. It seems to have a higher genotoxic potential for cancer cells than for normal lymphocytes. Vitamins A, C and E can increase this potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A,B.
Fig. 4A,B.
Fig. 5A,B.
Fig. 6A,B.
Fig. 7A,B.

Similar content being viewed by others

References

  • Ashby JA, Tinwell H, Lefevre PA, Browne MA (1995) The single cell gel electrophoresis assay for induced DNA damage (comet assay): measurement of tail length and moment. Mutagenesis 10:85–90

    CAS  PubMed  Google Scholar 

  • Barbeau B, Bernier R, Dumais N, Briand G, Olivier M, Faure R, Posner BI Tremblay M (1997) Activation of HIV-1 long terminal repeat transcription and virus replication via NF-κB-dependent and -independent pathways by potent phosphotyrosine phosphatase inhibitors, the peroxovanadium compounds. J Biol Chem 272:12968–12977

    Article  CAS  PubMed  Google Scholar 

  • Bevan AP, Drake PG, Yale JF, Shaver A, Posner BI (1995) Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis. Mol Cell Biochem 153:49–58

    CAS  PubMed  Google Scholar 

  • Blasiak J, Kowalik J (2000) A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat Res 469:135–145

    Article  CAS  PubMed  Google Scholar 

  • Carr A, Frei B (1999) Does Vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1012

    CAS  PubMed  Google Scholar 

  • Catani MV, Costanzo A, Savini I, Levrero M, De Laurenzi V, Wang JYJ, Melino G, Avigliano L (2002) Ascorbate up-regulates MLH1 (Mut L homologue-1) and p73: implications for the cellular response to DNA damage. Biochem J 364:441–447

    Article  CAS  PubMed  Google Scholar 

  • Collins AR, Duthie SJ, Dobson VL (1993) Direct enzymatic detection of endogenous base damage in human lymphocyte DNA. Carcinogenesis 14:1733–1735

    CAS  PubMed  Google Scholar 

  • Cortizo AM, Salice VC, Vescina CM, Etcheverry SB (1997) Proliferative and morfological changes induced by vanadium compounds on Swiss 3T3 fibroblasts. Biometals 10:127–133

    CAS  PubMed  Google Scholar 

  • Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Pereira Redondo JC (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab 86:1410–1417

    CAS  PubMed  Google Scholar 

  • Dong Y, Narla RK, Sudbeck E, Uckun FM (2000) Synthesis, X-ray structure, and anti-leukemic activity of oxovanadium(IV) complexes. J Inorg Biochem 78:321–330

    Article  CAS  PubMed  Google Scholar 

  • Evans MD, Podmore ID, Daly GJ, Perrett D, Lunec J, Herbert KE (1995) Detection of purine lesions in cellular DNA using single cell gel electrophoresis with Fpg protein. Biochem Soc Trans 23:434S

    CAS  PubMed  Google Scholar 

  • Gallo-Hendrikx E, Murray SA, Vonderhaar BK, Xiao Z-XJ (2001) Vanadate disrupts mammary gland development in whole organ culture. Dev Dyn 222:354–367

    Article  CAS  PubMed  Google Scholar 

  • Hanauske U, Hanauske AR, Marshall MH, Muggia VA, Von Hoff DD (1987) Biphasic effect of vanadium salts on in vitro tumor colony growth. Int J Cell Cloning 5:170–178

    CAS  PubMed  Google Scholar 

  • Heffetz D, Bushkin H, Dror R, Zick Y (1990) The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J Biol Chem 265:2896–2902

    CAS  PubMed  Google Scholar 

  • Hori C, Oka T (1980) Vanadate enhances the stimulatory action of insulin on DNA synthesis in cultured mouse mammary gland. Biochim Biophys Acta 610:235–240

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Ding M, Li J, Leonard SS, Rojanasakul Y, Castranova V, Vallyathan V, Ju G, Shi X (2001) Vanadium-induced nuclear factor of activated T cells activation through hydrogen peroxide. J Biol Chem 276:22397–22403

    Article  CAS  PubMed  Google Scholar 

  • Ivancsits S, Pilger A, Diem E, Schaffer A, Rudiger HW (2002) Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. Mutat Res 519:25–35

    Article  CAS  PubMed  Google Scholar 

  • Jaspers I, Samet JM, Erzurum S, Reed W (2000) Vanadium-induced κB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol 23:95–102

    CAS  PubMed  Google Scholar 

  • Klaude M, Eriksson S, Nygren J, Ahnstrom G (1996) The comet assay: mechanisms and technical considerations. Mutat Res 363:89–96

    CAS  PubMed  Google Scholar 

  • Krokan HE, Standal R, Slupphaug G (1997) DNA glycosylases in the base excision repair. Biochem J 325:1-16

    CAS  PubMed  Google Scholar 

  • McNeill JH, Yuen VG, Dai S, Orvig C (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem 153:175–180

    CAS  PubMed  Google Scholar 

  • Morinville A, Maysinger D, Shaver A (1998) From vanadis to atropos: vanadium compounds as pharmacological tools in cell death signalling. Trends Pharmacol Sci 19:452–460

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Kawanishi S (2000) Oxidative DNA damage by vitamin A and its derivative via superoxide generation. J Biol Chem 275:2003–2008

    Article  CAS  PubMed  Google Scholar 

  • Rojas E, Valverde M, Herrera LA, Altamirano-Lozano M, Ostrosky-Wegman P (1996) Genotoxicity of vanadium pentoxide evaluate by the single cell gel electrophoresis assay in human lymphocytes. Mutat Res 359:77–84

    Article  CAS  PubMed  Google Scholar 

  • Rojas E, Herrera LA, Poirier LA, Ostrosky-Wegman P (1999) Are metals dietary carcinogens? Mutat Res 443:157–181

    CAS  PubMed  Google Scholar 

  • Ruff SJ, Chen K, Cohen S (1997) Peroxovanadate induces tyrosine phosphorylation of multiple signaling proteins in mouse liver and kidney. J Biol Chem 272:1263–1267

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H (2002) A new concept: the use of vanadium complexes in the treatment of diabetes mellitus. Chem Rec 2:237–248

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Nakai M, Miki T, Tsuchiya K, Takada J, Matsushita R (1992) DNA cleavage by hydroxyl radicals generated in a vanadyl ion-hydrogen peroxide system. Biochem Biophys Res Commun 189:1090–1095

    CAS  PubMed  Google Scholar 

  • Sakurai H, Tamura H, Okatani K (1995) Mechanism for a new antitumor vanadium complex: hydroxyl radical-dependent DNA cleavage by 1,10-phenanthroline-vanadyl complex in the presence of hydrogen peroxide. Biochem Biophys Res Commun 206:133–137

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H (2002) Antidiabetic vanadium(IV) and zinc(II) complexes. Coordin Chem Rev 226:187–198

    Article  CAS  Google Scholar 

  • Sheu CW, Rodriguez I, Lee JK (1992) Proliferation and morphological transformation of BALB/3T3 cells by a prolonged treatment with sodium orthovanadate. Food Chem Toxicol 30:307–311

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Wang P, Jiang H, Mao Y, Ahmed N, Dalal N (1996) Vanadium(IV) causes 2′-deoxyguanosine hydroxylation and deoxyribonucleic acid damage via free radical reactions. Ann Clin Lab Sci 26:39–49

    CAS  PubMed  Google Scholar 

  • Singh NP, Stephens RE (1997) Microgel electrophoresis: sensitivity, mechanisms and DNA electrostretching. Mutat Res 383:167–175

    CAS  PubMed  Google Scholar 

  • Singh NP, McCoy T, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–192

    CAS  PubMed  Google Scholar 

  • Smith JB (1983) Vanadium ions stimulate DNA synthesis in Swiss mouse 3T3 and 3T6. Proc Natl Acad Sci USA 80:6162–6166

    CAS  PubMed  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J-C, Sasaki Y-F (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    CAS  PubMed  Google Scholar 

  • Wozniak K, Blasiak J (2002) Free radicals-mediated induction of oxidized DNA bases and DNA-protein cross-links by nickel chloride. Mutat Res 514:233–243

    Article  CAS  PubMed  Google Scholar 

  • Wozniak K, Blasiak J (2003) In vitro genotoxicity of lead acetate: induction of single and double DNA strand breaks and DNA-protein cross-links. Mutat Res 535:127–139

    CAS  PubMed  Google Scholar 

  • Yamashita N, Murata M, Inoue S, Burkitt MJ, Milne L, Kawanishi S (1998) α-Tocopherol induces oxidative damage to DNA in the presence of copper(II) ions. Chem Res Toxicol 11:855–862

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Huang C, Li J, Leoanrd SS, Lanciotti R, Butterworth L, Shi X (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 392:311–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Magdalena Jaskula for her technical assistance. The work was supported by the grant 505/449 (K.W.) and 505/450 (J.B.) from the University of Lodz, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Wozniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wozniak, K., Blasiak, J. Vanadyl sulfate can differentially damage DNA in human lymphocytes and HeLa cells. Arch Toxicol 78, 7–15 (2004). https://doi.org/10.1007/s00204-003-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-003-0506-3

Keywords

Navigation