Skip to main content

Advertisement

Log in

Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract.

Recently it was found that the specific activity of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) in Methanothermobacter marburgensis (formerly Methanobacterium thermoautotrophicum strain Marburg) increased six-fold when the hydrogenotrophic archaeon was grown in chemostat culture under nickel-limited conditions. We report here that the increase is due, at least in part, to increased expression of the hmd gene. This was demonstrated by Northern and Western blot analysis. These techniques were also used to show that hmd expression in growing M. marburgensis is not under the control of the H2 concentration. Studies with monoclonal antibodies on the effect of growth conditions on the expression of hmdII and hmdIII, which have been proposed to encode Hmd isoenzymes, were also carried out. The results indicate that the expression of these two genes is regulated by H2 rather than by nickel, and that HmdII and HmdIII most probably do not exhibit Hmd activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afting, C., Kremmer, E., Brucker, C. et al. Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch Microbiol 174, 225–232 (2000). https://doi.org/10.1007/s002030000197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002030000197

Navigation