Skip to main content
Log in

Biochemical properties and phylogeny of hydroxypyruvate reductases from methanotrophic bacteria with different c1-assimilation pathways

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In the aerobic methanotrophic bacteria Methylomicrobium alcaliphilum 20Z, Methylococcus capsulatus Bath, and Methylosinus trichosporium OB3b, the biochemical properties of hydroxypyruvate reductase (Hpr), an indicator enzyme of the serine pathway for assimilation of reduced C1-compounds, were comparatively analyzed. The recombinant Hpr obtained by cloning and heterologous expression of the hpr gene in Escherichia coli catalyzed NAD(P)H-dependent reduction of hydroxypyruvate or glyoxylate, but did not catalyze the reverse reactions of D-glycerate or glycolate oxidation. The absence of the glycerate dehydrogenase activity in the methanotrophic Hpr confirmed a key role of the enzyme in utilization of C1-compounds via the serine cycle. The enzyme from Ms. trichosporium OB3b realizing the serine cycle as a sole assimilation pathway had much higher special activity and affinity in comparison to Hpr from Mm. alcaliphilum 20Z and Mc. capsulatus Bath assimilating carbon predominantly via the ribulose monophosphate (RuMP) cycle. The hpr gene was found as part of gene clusters coding the serine cycle enzymes in all sequenced methanotrophic genomes except the representatives of the Verrucomicrobia phylum. Phylogenetic analyses revealed two types of Hpr: (i) Hpr of methanotrophs belonging to the Gammaproteobacteria class, which use the serine cycle along with the RuMP cycle, as well as of non-methylotrophic bacteria belonging to the Alphaproteobacteria class; (ii) Hpr of methylotrophs from Alpha- and Betaproteobacteria classes that use only the serine cycle and of non-methylotrophic representatives of Betaproteobacteria. The putative role and origin of hydroxypyruvate reductase in methanotrophs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hpr:

hydroxypyruvate reductase

RuBP:

ribulose bisphosphate

RuMP:

ribulose monophosphate

References

  1. Trotsenko, Y. A., and Murrell, J. C. (2008) Metabolic aspects of obligate aerobic methanotrophy, Adv. App. Microbiol., 63, 183–229.

    Article  CAS  Google Scholar 

  2. Whittenbury, R. (1980) The interrelationship of autotrophy and methylotrophy as seen in Methylococcus capsulatus (Bath), Proc. Int. Symp. “Microbial Growth on C1 com-pounds”, Heyden, London, pp. 181–190.

    Google Scholar 

  3. Baxter, N. J., Hirt, R. P., Bodrossy, L., Kovaks, K. L., Embley, T. M., Prosser, J. I., and Murrell, J. C. (2002) The ribulose-1,5-bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath), Arch. Microbiol., 177, 279–289.

    Article  CAS  PubMed  Google Scholar 

  4. Ward, N., Larsen, Q., Sakwa, J., Bruseth, L., Khouri, H., Durkin, A. S., Dimitrov, G., Jiang, L., Scanlan, D., Kang, K. H., Lewis, M., Nelson, K. E., Methe, B., Wu, M., Heidelberg, J. F., Paulsen, I. T., Fouts, D., Ravel, J., Tettelin, H., Ren, Q., Read, T., DeBoy, R. T., Seshadri, R., Salzberg, S. L., Jensen, H. B., Birkeland, N. K., Nelson, W. C., Dodson, R. J., Grindhaug, S. H., Holt, I., Eidhammer, I., Jonasen, I., Vanaken, S., Utterback, T., Feldblyum, T. V., Fraser, C. M., Lillehaug, J. R., and Eisen, J. A. (2004) Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath), PLoS Biol., 2, 1616–1628.

    CAS  Google Scholar 

  5. Shishkina, V. N., Yurchenko, Y. Y., Romanovskaya, V. A., Malashenko, Y. R., and Trotsenko, Y. A. (1976) About alternative of methane assimilation pathways in obligate methylotrophs, Mikrobiologiya, 45, 417–419.

    CAS  Google Scholar 

  6. Khmelenina, V. N., Kalyuzhnaya, M. G., Sakharovsky, V. G., Suzina, N. E., Trotsenko, Y. A., and Gottschalk, G. (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs, Arch. Microbiol., 172, 321–329.

    Article  CAS  PubMed  Google Scholar 

  7. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edn., Cold Spring Harbor Laboratory, N.-Y.

    Google Scholar 

  8. Reshetnikov, A. S., Mustakhimov, I. I., Rozova, O. N., Beschastny, A. P., Khmelenina, V. N., Murrell, J. C., and Trotsenko, Y. A. (2008) Characterization of the pyrophos-phate-dependent 6-phosphofructokinase from Methylo-coccus capsulatus Bath, FEMS Microbiol. Lett., 288, 202–210.

    Article  CAS  PubMed  Google Scholar 

  9. Slater, G. G. (1969) Stable pattern formation and determi-nation of molecular size by pore-limit electrophoresis, Anal. Chem., 41, 1039–1041.

    Article  CAS  PubMed  Google Scholar 

  10. Izumi, Y., Yoshida, T., Kanzaki, H., Toki, S., Miyazaki, S. S., and Yamada, H. (1990) Purification and characteriza-tion of hydroxypyruvate reductase from a serine-producing methylotroph Hyphomicrobium methylovorum GM2, Eur. J. Biochem., 190, 279–284.

    Article  CAS  PubMed  Google Scholar 

  11. Chistoserdova, L., and Lidstrom, M. (1991) Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM1, J. Bacteriol., 173, 7228–7232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rozova, O. N., Khmelenina, V. N., Bocharova, K. A., Mustakhimov, I. I., and Trotsenko, Y. A. (2015) Role of NAD+-dependent malate dehydrogenase in the metabo-lism of Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b, Microorganisms, 3, 47–59.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ali, V., Shigeta, Y., and Nozaki, T. (2003) Molecular and structural characterization of NADPH-dependent D-glyc-erate dehydrogenase from the enteric parasitic protist Entamoeba histolytica, Biochem. J., 375, 729–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohn, L. D., and Jakoby, W. B. (1968) Tartaric acid metab-olism. VII. Crystalline hydroxypyruvate reductase (D-glyc-erate dehydrogenase), J. Biol. Chem., 243, 2494–2499.

    CAS  PubMed  Google Scholar 

  15. Utting, J. M., and Kohn, L. D. (1975) Structural, kinetic, and renaturation properties of an induced hydroxypyruvate reductase from Pseudomonas acidovorans, J. Biol. Chem., 250, 5233–5242.

    CAS  PubMed  Google Scholar 

  16. Husic, D. W., and Tolbert, N. E. (1987) NADH:hydrox-ypyruvate reductase and NADPH:glyoxylate reductase in algae: partial purification and characterization from Chlamydomonas reinhardtii, Arch. Biochem. Biophys., 252, 396–408.

    Article  CAS  PubMed  Google Scholar 

  17. Piotrowska, A., and Czerpak, R. (2009) Cellular response of light/dark-grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to exogenous adenine-and phenylurea-type cytokinins, Acta Physiol. Plant., 31, 573–585.

    Article  CAS  Google Scholar 

  18. Kleczkowski, L. A., Randall, D. D., and Edwards, G. E. (1991) Oxalate as a potent and selective inhibitor of spinach (Spinacia oleracea) leaf NADPH-dependent hydroxypyru-vate reductase, Biochem. J., 276, 125–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Willis, J. E., and Saflach, H. J. (1962) Evidence for mammalian D-glyceric dehydrogenase, J. Biol. Chem., 237, 910–915.

    CAS  PubMed  Google Scholar 

  20. Ho, C. L., Noji, M., Saito, M., and Saito, K. (1999) Regulation of serine biosynthesis in Arabidopsis. Crucial role of plastidic 3-phosphoglycerate dehydrogenase in non-photosynthetic tissues, J. Biol. Chem., 274, 397–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Y. But or Y. A. Trotsenko.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 11, pp. 1647–1656.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-310, September 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

But, S.Y., Egorova, S.V., Khmelenina, V.N. et al. Biochemical properties and phylogeny of hydroxypyruvate reductases from methanotrophic bacteria with different c1-assimilation pathways. Biochemistry Moscow 82, 1295–1303 (2017). https://doi.org/10.1134/S0006297917110074

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917110074

Keywords

Navigation