Skip to main content
Log in

Bioinformatics prediction and screening of viral mimicry candidates through integrating known and predicted DMI data

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Domain–motif interactions (DMIs) represent transient bonds formed when a Short Linear Motif (SLiM) engages a globular domain via a compact contact interface. Understanding the mechanics of DMIs is critical for maintaining diverse regulatory processes and deciphering how various viruses hijack host cellular machinery. However, identifying DMIs through traditional in vitro and in vivo experiments is challenging due to their degenerate nature and small contact areas. Predictions often carry a high rate of false positives, necessitating rigorous in-silico validation before embarking on experimental work. This study assessed the binding energy changes in predicted SLiM instances through in-silico peptide exchange experiment, elucidating how they interact with known 3D DMI complexes. We identified a subset of potential mimicry candidates that exhibited effective binding affinities with native DMI structures, suggesting their potential to be true mimicry candidates. The identified viral SLiMs can be potential targets in developing therapeutics, opening new opportunities for innovative treatments that can be finely tuned to address the complex molecular underpinnings of various diseases. To gain a comprehensive understanding of identified DMIs, it is imperative to conduct further validation through experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This article contains excerpts from Idrees' thesis published in 2020 (Idrees 2020).

References

  • Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7(3):188–197

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Interactome Mapping C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607

    Article  Google Scholar 

  • Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3(11):1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Bjorkholm P, Sonnhammer EL (2009) Comparative analysis and unification of domain-domain interaction networks. Bioinformatics 25(22):3020–3025

    Article  PubMed  Google Scholar 

  • Butland G et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537

    Article  CAS  PubMed  Google Scholar 

  • Davey NE et al (2017) Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 284(3):485–498

    Article  CAS  PubMed  Google Scholar 

  • Dinkel H et al (2012) ELM–the database of eukaryotic linear motifs. Nucleic Acids Res 40(Database issue):D242–D251

    Article  CAS  PubMed  Google Scholar 

  • Dinkel H et al (2016) ELM 2016-data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 44(D1):D294-300

    Article  CAS  PubMed  Google Scholar 

  • Durmus Tekir S et al (2013) PHISTO: pathogen-host interaction search tool. Bioinformatics 29(10):1357–1358

    Article  PubMed  Google Scholar 

  • Edwards RJ (2013) SLiMSuite software package. 2013. http://www.southampton.ac.uk/~re1u06/software/packages/slimsuite/. Accessed 05 Feb 2019

  • Edwards RJ, Palopoli N (2015) Computational prediction of short linear motifs from protein sequences. Methods Mol Biol 1268:89–141

    Article  CAS  PubMed  Google Scholar 

  • Evans P et al (2009) Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. Bmc Med Gen 2:27. https://doi.org/10.1186/1755-8794-2-27

    Article  CAS  Google Scholar 

  • Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124(4):767–782

    Article  CAS  PubMed  Google Scholar 

  • Freund C et al (2002) Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. EMBO J 21(22):5985–5995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson TJ et al (2015) Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun Signal 13:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Glavina J et al (2018) Interplay between sequence, structure and linear motifs in the adenovirus E1A hub protein. Virology 525:117–131

    Article  CAS  PubMed  Google Scholar 

  • Guirimand T, Delmotte S, Navratil V (2015) VirHostNet 20: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43(Database issue):D583–D587

    Article  CAS  PubMed  Google Scholar 

  • Hagai T et al (2011) Intrinsic disorder in ubiquitination substrates. J Mol Biol 412(3):319–324

    Article  CAS  PubMed  Google Scholar 

  • Idrees S, Perez-Bercoff A, Edwards RJ (2018) SLiMEnrich: computational assessment of protein-protein interaction data as a source of domain-motif interactions. PeerJ 6:e5858

    Article  PubMed  PubMed Central  Google Scholar 

  • Idrees S (2020) Predicting motif mimicry in viruses. PhD, University of New South Wales, Sydney, Australia

  • Idrees S et al (2023) How different viruses perturb host cellular machinery via short linear motifs. EXCLI 22:1113–1128

    Google Scholar 

  • Kiel C, Serrano L (2014) Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Mol Syst Biol 10:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita K, Nakamura H (2005) Identification of the ligand binding sites on the molecular surface of proteins. Protein Sci 14(3):711–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M et al (2022) The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 50(D1):D497–D508

    Article  CAS  PubMed  Google Scholar 

  • Lee T et al (2004) Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell 14(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Linding R et al (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luck K et al (2020) A reference map of the human binary protein interactome. Nature 580(7803):402–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meszaros B et al (2017) Degrons in cancer. Sci Signal 10(470):1–29

    Article  Google Scholar 

  • Mihalic F et al (2023) Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat Commun 14(1):2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller ML et al (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosca R et al (2014) 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res 42(Database issue):D374–D379

    Article  CAS  PubMed  Google Scholar 

  • Pawson T, Linding R (2005) Synthetic modular systems–reverse engineering of signal transduction. FEBS Lett 579(8):1808–1814

    Article  CAS  PubMed  Google Scholar 

  • Rajagopala SV et al (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 32(3):285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose PW et al (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45(D1):D271–D281

    CAS  PubMed  Google Scholar 

  • Rual JF et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437(7062):1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Schymkowitz J et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Cabrera A et al (2013) A viral-human interactome based on structural motif-domain interactions captures the human infectome. PLoS One 8(8):1–13

    Article  Google Scholar 

  • Stark C et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS ONE 3(7):e2524

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Roey K, Gibson TJ, Davey NE (2012) Motif switches: decision-making in cell regulation. Curr Opin Struct Biol 22(3):378–385

    Article  PubMed  Google Scholar 

  • Venkatakrishnan AJ et al (2020) Benchmarking evolutionary tinkering underlying human-viral molecular mimicry shows multiple host pulmonary-arterial peptides mimicked by SARS-CoV-2. Cell Death Discov 6(1):96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrinpar A, Park SH, Lim WA (2003) Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426(6967):676–680

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of New South Wales, Sydney, and Dr. Richard J. Edwards.

Funding

This work was supported by the University of New South Wales through a University International Postgraduate Award to Sobia Idrees. The authors received no funding support for publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SI performed the experiments, analysed the data, contributed analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft. KRP authored or reviewed drafts of the paper and approved the final draft.

Corresponding author

Correspondence to Sobia Idrees.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 105 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, S., Paudel, K.R. Bioinformatics prediction and screening of viral mimicry candidates through integrating known and predicted DMI data. Arch Microbiol 206, 30 (2024). https://doi.org/10.1007/s00203-023-03764-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03764-w

Keywords

Navigation