Skip to main content

Advertisement

Log in

A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

 Not applicable.

References

  • Aarthi J, Sanjana S, Sornambal S, Karthikeyan C, Sharmila S, Suba R, Akshaya P, Kaviya Priya S, Gowri S (2022) Green synthesis and characterization of NiO nanoparticles using catharanthus roseus leaf extract. Mat Today Proceed. https://doi.org/10.1016/j.matpr.2022.09.596

    Article  Google Scholar 

  • Abdelghany TM, Al-Rajhi AMH, Yahya R (2023) Phyto-fabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Bioref 13:417–430. https://doi.org/10.1007/s13399-022-03412-1

    Article  CAS  Google Scholar 

  • Abu Nayem SM, Shaheen Shah S, Billah Chaity S, Kumar Biswas B, Nahar B, Abdul Aziz Md, Zamir Hossain M (2022) Jute stick extract assisted hydrothermal synthesis of zinc oxide nanoflakes and their enhanced photocatalytic and antibacterial efficacy. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2022.104265

    Article  Google Scholar 

  • Achudhan D, Vijayakumar S, Malaikozhundan B, Divya M, Jothirajan M, Subbian K, Sanchez ZIG, Mahboob S, Al-Ghanim KA, Vaseeharan B (2020) The antibacterial, antibiofilm, antifogging and mosquitocidal activities of titanium dioxide (TiO2) nanoparticles green-synthesized using multiple plants extracts. J Env Chem Eng. https://doi.org/10.1016/j.jece.2020.104521

    Article  Google Scholar 

  • Adinaveen T, Thenmozhi Karnan, Stanly Arul Samuel Selvakumar, (2019) Photocatalytic and optical properties of NiO added Nephelium Lappaceum L. peel extract: An attempt to convert waste to a valuable product, Heliyon, https://doi.org/10.1016/j.heliyon.2019.e01751.

  • Ahmad W, Krishna Kumar Jaiswal , Shivani Soni, (2020) Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties, Inorganic and Nano-Metal Chemistry, https://doi.org/10.1080/24701556.2020.1732419.

  • Ahmed B, Solanki B, Zaidi A (2018) Mohammad Saghir Khan and Javed Musarrat Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nano colloid–bacteria interface, the royal society of chemistry. Toxicology Res. https://doi.org/10.1039/c8tx00267c

    Article  Google Scholar 

  • Ajitha B, Ashok Kumar Reddy Y, Rajesh KM, Sreedhara Reddy P, (2016) Sesbania grandiflora leaf extract assisted green synthesis of silver nanoparticles: Antimicrobial activity, Materials Today: Proceedings, 3, 1977–1984.

  • Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad MD (2019) Costeffective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Letter Rev. 12(3):244–254. https://doi.org/10.1080/17518253.2019.1629641

    Article  CAS  Google Scholar 

  • Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad MD (2019) Costeffective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem. Lett. Rev. 12(3):244–254. https://doi.org/10.1080/17518253.2019.1629641

    Article  CAS  Google Scholar 

  • Akintelu SA, Folorunso AS, (2019) Characterization and antimicrobial investigation of synthesized silver nanoparticles from annona muricata leaf extracts. J Nanotechnology: Nanomedicine Nanobiotechnology, 6: 022. https://doi.org/10.24966/NTMB-2044/100022.

  • Aldeen TS, Mohamed HEA, Maaza M (2022) ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids 160:110313. https://doi.org/10.1016/j.jpcs.2021.110313

    Article  CAS  Google Scholar 

  • Alaa AA. Aljabali , Yazan Akkam, Mazhar Salim Al Zoubi, Khalid M. Al-Batayneh, Bahaa Al-Trad, Osama Abo Alrob, Alaaldin M. Alkilany, Mourad Benamara and David J. Evans, (2018) Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials 8, 174. https://doi.org/10.3390/nano8030174.

  • Al-Rajhi AMH, Salem SS, Alharbi AA (2022) Abdelghany, Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian J Chem 15(7):103927. https://doi.org/10.1016/j.arabjc.2022.103927

    Article  CAS  Google Scholar 

  • Al-Zahrani, FAM, Salem, S. Salem, Al-Ghamdi, HA, Nhari, LM, Lin, L, El-Shishtawy RM, (2022) Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract, Bioengineering, 9, 452. 10.3390/ bioengineering9090452.

  • Ambika S, Sundrarajan M (2016) BF4 ionic liquid-mediated synthesis of TiO2 nanoparticles using Vitex negundo Linn extract and its antibacterial activity. J Mol Liq 221:986–992. https://doi.org/10.1016/j.molliq.2016.06.079

    Article  CAS  Google Scholar 

  • Periyasamy Anbu, Subash CB Gopinath, and S Jayanthi (2020) Synthesis of gold nanoparticles using Platycodon grandiflorum extract and its antipathogenic activity under optimal conditions. Nanomaterials and Nanotechnology, 10, 1–9. https://doi.org/10.1177/1847980420961697.

  • Angel Ezhilarasi J, Judith Vijaya K, Kaviyarasu LJ, Kennedy RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol, B: Biol 17:31265–4. https://doi.org/10.1016/j.jphotobiol.2018.01.023

    Article  CAS  Google Scholar 

  • Angel Ezhilarasi J, Judith Vijaya L, John Kennedy K (2019) Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Mat Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122419

    Article  Google Scholar 

  • Angel Ezhilarasi E, Judith Vijaya J, Kaviyarasu K, Xu Zhang L, Kennedy John (2020) Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surfaces Interf 9:30583–8. https://doi.org/10.1016/j.surfin.2020.100553

    Article  CAS  Google Scholar 

  • Angel Ezhilarasi, J. Judith Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, L. John Kennedy, (2016) Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells, https://doi.org/10.1016/j.jphotobiol.2016.10.003.

  • Afzal Ansari, Vasi Uddin Siddiqui, Wahid Ul Rehman, Md. Khursheed Akram, Weqar Ahmad Siddiqi, Abeer M. Alosaimi, Mahmoud A. Hussein and Mohd Rafatullah, Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating Its Photocatalytic and In Vitro Antimicrobial Activity, Catalysts, 12 181. https://doi.org/10.3390/catal12020181.

  • Yasir Anwar, Ihsan Ullah, Mazhar Ul-Islam, Khalid M Alghamdi, Ashi Khalil, Tahseen Kamal, (2021) Adopting a green method for the synthesis of gold nanoparticles on cotton cloth for antimicrobial and environmental applications. Arabian J Chem, 14, 103327. https://doi.org/10.1016/j.arabjc.2021.103327

  • M. Aravind, M. Amalanathan, M. (2021) Sony Michael Mary, Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties, SN Applied Science, https://doi.org/10.1007/s42452-021-04281-5.

  • M. Aravind, M. Amalanathan, M. (2021) Sony Michael Mary, Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl. Sci. https://doi.org/10.1007/s42452-021-04281-5

  • Archana P, Janarthanan B, Bhuvana S, Rajiv P, Sharmila S (2022) Concert of zinc oxide nanoparticles synthesized using Cucumis melo by green synthesis and the antibacterial activity on pathogenic bacteria. Inorg Chem Commun 137:109255. https://doi.org/10.1016/j.inoche.2022.109255

    Article  CAS  Google Scholar 

  • Aseer Minha, Aslam Usman, Khalid Bushra, Chen Bin (2020) Green route to synthesize Zincoxide nanoparticles using leaf extracts of Cassia fistula and Melia Azadirachta and their antibacterial potential. Scientific Report 10:9055. https://doi.org/10.1038/s41598-020-65949-3

    Article  CAS  Google Scholar 

  • R. Aswini, S. Murugesan, Karthik Kannan, (2020) Bio-engineered TiO2nanoparticles using Ledebouriarevoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. International Journal of Environmental Analytical Chemistry, 0306–7319. https://doi.org/10.1080/03067319.2020.1718668.

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474. https://doi.org/10.1016/j.foodchem.2004.10.024

    Article  CAS  Google Scholar 

  • Neelesh Babu, Vinay Mohan Pathak, Ajeet Singh, Navneet, (2019) Sonchus asper leaves aqueous extract mediated synthesis of Titanium dioxide nanoparticles. The Pharma Innovation J 8 (4) 817-822

  • Baig N, Kammakakam I, Falathabe W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mat Adv 2:1821. https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

  • Balasubramanian S, Kala SMJ, Pushparaj TL, Kumar PV (2019) Biofabrication of gold nanoparticles using cressa cretica leaf extract and evaluation of catalytic and antibacterial efficacy. Nano Biomedical Engneering 11(1):58–66. https://doi.org/10.5101/nbe.v11i1.p58-66

    Article  CAS  Google Scholar 

  • Balasubramanian S, Mary Jelastin Kala S, Lurthu Pushparaj T (2020) Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic antimicrobial and anticancer activities. J Drug Delivery Sci Tech 57:101620. https://doi.org/10.1016/j.jddst.2020.101620

    Article  CAS  Google Scholar 

  • Mehmet Firat Baran, Hilal Acay and Cumali Keskin, (2020) Determination of Antimicrobial and Toxic Metal Removal Activities of Plant-Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials, Global Challenges. https://doi.org/10.1002/gch2.201900104.

  • Muthiah Bavanilatha, Lakshmanan Yoshitha, S. Nivedhitha, S. Sahithya, (2019) Bioactive studies of TiO2 nanoparticles synthesized using Glycyrrhiza glabra, Biocatalysis and Agricultural Biotechnology, 19, 101131. https://doi.org/10.1016/j.bcab.2019.101131.

  • Meghashyama Bhat, Bidhayak Chakraborty, Raju Suresh Kumar, Abdulrahman I. Almansour, Natarajan Arumugam, D. Kotresha, SS. Pallavi, SB. Dhanyakumara, K.N. Shashiraj Sreenivasa Nayaka, Biogenic synthesis characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. Journal of King Saud University–Science, 33 (2021) 101296. https://doi.org/10.1016/j.jksus.2020.101296.

  • P. Boomi, R.M. Ganesan, G. Poorani, H. Gurumallesh Prabu, S. Ravikumar, J. (2019) Jeyakanthana Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract, Material science and Engineering, C99, 202–209. https://doi.org/10.1016/j.msec.2019.01.105.

  • Chahardoli Azam, Karimi Naser, Fattahi Ali (2017) Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Adv Powder Tech. https://doi.org/10.1016/j.apt.2017.11.003

    Article  Google Scholar 

  • Azam Chahardoli, Naser Karimi, Fatemeh Sadeghi, Ali Fattahi, (2017) Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artificial Cells, Nanomedicine and Biotechnology, 46: 3, 579-588. https://doi.org/10.1080/21691401.2017.1332634

  • Azam Chahardolia, Naser Karimia, Ali Fattahib and Iraj Salimikiac Biological applications of Phytosynthesized gold nanoparticles using leaf extract of Dracocephalum kotschyi, https://doi.org/10.1002/jbm.a.36578

  • Chena L, Batjikha I, Hurha J, Hanb Y, Huob Y, Alia H, Lib JF, Rupab EJ, Ahna JC, Mathiyalagana Ramya, Yanga DC (2019) Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik - Int J for Light Electron Optics 184:324–329. https://doi.org/10.1016/j.ijleo.2019.03.051

    Article  CAS  Google Scholar 

  • Daniel M.C, Astruc D, (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum Size-Related Properties and Applications Towards Biology, Catalysis and Nanotechnology, Chem. Rev.104 293–346

  • Das P, Dutta T, Manna S, Loganathan S, Basak P (2022) Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): Characterization, anti-bacterial, and anti-cancer studies. Environ Res 204:111962. https://doi.org/10.1016/j.envres.2021.111962

    Article  CAS  PubMed  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon, M, Dalila LMA, Sarma SJ, Brar SK, (2017) Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects, Nanotechnology Environment Engineering, 2, 1–21 https://doi.org/10.1007/s41204-017-0029-4.

  • Demissie MG, Sabir FK, Edossa Gemechu Deressa, Gonfa BA (2020) Synthesis of zinc Oxide nanoparticles using leaf extract of Lippia adoensis (Koseret) and evaluation of Its antibacterial activity, Hindawi. J Chem 9:7459042. https://doi.org/10.1155/2020/7459042

    Article  CAS  Google Scholar 

  • Chella Purushothaman Devatha and Arun K. Thalla, Green Synthesis of Nanomaterials, Synthesis of Inorganic Nanomaterials, https://doi.org/10.1016/B978-0-08-101975-7.00007-5.

  • Aram Asareh Zadegan Dezfuli, Mohammed Abu-Elghait, Salem S. (2023) Salem Recent Insights into Nanotechnology in Colorectal Cancer, Applied Biochemistry and Biotechnology, https://doi.org/10.1007/s12010-023-04696-3.

  • Dobrucka R, Długaszewska J (2015) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium Pratense flower extract. Saudi J Biolog Sci 15:00131. https://doi.org/10.1016/j.sjbs.2015.05.016

    Article  CAS  Google Scholar 

  • El-Khawaga AM, Elsayed MA, Ahmed MG, Soliman A, Hashem AH, Zaher AA, Mohsen M, Salem SS (2023) Green synthesized ZnO nanoparticles by Saccharomyces cerevisiae and their antibacterial activity and photocatalytic degradation. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-023-04827-0

    Article  Google Scholar 

  • Fahimmunisha BA, Ishwarya R, AlSalhi MS, Devanesan S, Govindarajan M, Vaseeharan B (2020) Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Delivery Sci Techno 55:101465. https://doi.org/10.1016/j.jddst.2019.101465

    Article  CAS  Google Scholar 

  • Fatimah, Zera Helga Vuvida Irgani Aftrid, (2019) Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus Tricolor L.) leaf extract, Green Chemistry Letters and Reviews, 12:1 25–30. https://doi.org/10.1080/17518253.2019.1569729.

  • Giriraj Tailor BL, Yadav JC, Joshi M, Suvalka C (2020) Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem Bio-Phys Report 24:100848. https://doi.org/10.1016/j.bbrep.2020.100848

    Article  Google Scholar 

  • Gudata L , Abel Saka, Jule Leta Tesfaye, R.Shanmugam, L.Priyanka Dwarampudi, N. Nagaprasad, B. Stalin, Ramaswamy Krishnaraj, (2022) Investigation of TiO2 Nanoparticles Using Leaf Extracts of Lippia adoensis (Kusaayee) for Antibacterial Activity, Hindawi. Journal of Nanomaterials https://doi.org/10.1155/2022/3881763.

  • Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminal and hydrogen peroxide. J Photochem Photobio, A Chem 193:89–96

    Article  CAS  Google Scholar 

  • Hafeez M, Shaheen R, Akram B, Ahmed MN, Haq ZAS, Din SU, Zeb M, Khan MA (2021) Green synthesis of nickel oxide nanoparticles using populusiliate leaves extract and their potential antibacterial applications. South African J Chem 75:168–173. https://doi.org/10.17159/0379-4350/2021/v75a21

    Article  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran A, Jimenez D, de Aberasturi I, de Larramendi R, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trend Biotech. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  Google Scholar 

  • Haleem Abid, Javaid Mohd, Singh Ravi Pratap, Rab Shanay, Suman Rajiv (2023) Applications of nanotechnology in medical field: a brief review. Global Health J 7:70–77. https://doi.org/10.1016/j.glohj.2023.02.008

    Article  Google Scholar 

  • Hamelian M, Hemmati S, Varmira K (2018) Hojat Veisi., green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. J Taiwan Inst Chem Eng 000:1–10. https://doi.org/10.1016/j.jtice.2018.07.018

    Article  CAS  Google Scholar 

  • Hamidinasab M, Najmieh Ahadi, Mohammad Ali Bodaghifard, Goutam Brahmachari, (2022) Sustainable and bio-based catalysts for multicomponent organic synthesis: an overview, polycyclic aromatic compounds, https://doi.org/10.1080/10406638.2022.2097278

  • Hammad EN, Salem SS, Mohamed AA, El-Dougdoug W (2022) Environmental impacts of eco-friendly iron oxide nanoparticles on dyes removal and antibacterial activity. Appl Biochem Biotechnol 194:6053–6067. https://doi.org/10.1007/s12010-022-04105-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariharan D, Srinivasan K, Nehru LC, Synthesis and Characterization of Tio2 Nanoparticles Using Cynodon Dactylon Leaf Extract for Antibacterial and Anticancer (A549 Cell Line), Journal of Nanomedicine Research, 5(6) (2017) 00138 https://www.researchgate.net/publication/331193670.

  • Haritha V, Gowri S, Janarthanan B, Faiyazuddin Md, Karthikeyan C, Sharmila S (2022) Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. Inorg Chem Commun 144:109930. https://doi.org/10.1016/j.inoche.2022.109930

    Article  CAS  Google Scholar 

  • Hashem, Salem S. (2021) Salem Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity, 2100432, https://doi.org/10.1002/biot.202100432.

  • Hassan, H, Omoniyi, Ki, Okibe, Fg, Nuhu, Aa, Echioba, (2019) Evaluation of Antibacterial Potential of Biosynthesized Plant Leave Extract Mediated Titanium Oxide Nanoparticles Using Hypheae Thiebeace and Anannos Seneglensis, Journal of Applied Science, Environment and Management, 23 (10) 1795–1804. https://doi.org/10.4314/Jasem.V23i10.5.

  • Hemlata, Prem Raj Meena, Arvind Pratap Singh, Kiran Kumar Tejavath, (2020) Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines, ACS Omega 5, 5520-5528, https://doi.org/10.1021/acsomega.0c00155

  • Henam Sylvia Devi, Muzaffar Ahmad Boda, Mohammad Ashraf Shah, Shazia Parveen, Abdul Hamid Wani, (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity, Green Process Synthesis, 8, 38–45 https://doi.org/10.1515/gps-2017-0145

  • Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury (II), Angew. Chem. Int. Ed. 46:6824–6828

    Article  CAS  Google Scholar 

  • Emmanuel E. Imade, Timothy O. Ajiboye, Ayomide E. Fadiji, Damian C. Onwudiwe, Olubukola O. Babalola, (2022) Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity Scientific African 16, e01152 https://doi.org/10.1016/j.sciaf.2022.e01152

  • Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S (2019) Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organometallic Chem. https://doi.org/10.1002/aoc.4950

    Article  Google Scholar 

  • Iqbal J, Abbasi BA, Ahmad R, Mahmoodi M, Munir A, Zahra SA, Shahbaz A, Shaukat M, Kanwal S, Uddin S, Mahmood T, Capasso R (2020) Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of rhamnus triquetra (Wall.) and investigation of Its multiple In vitro. Bio Potentials Biomed 8:117. https://doi.org/10.3390/biomedicines8050117

    Article  CAS  Google Scholar 

  • Jalab J, Abdelwahed W, Kitaz A, Al-Kayali R (2021) Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon 7:e08033. https://doi.org/10.1016/j.heliyon.2021.e08033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadiyalaa U, Turali-Emreb ES, Bahngb JH, Kotovb NA, Scott Van Eppsa J (2018) Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale. https://doi.org/10.1039/C7NR08499D

    Article  Google Scholar 

  • Kahsay MH, Tadesse A, RamaDevi D, Belachew N, Basavaiah K (2019) Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv. https://doi.org/10.1039/c9ra07630a

    Article  PubMed  PubMed Central  Google Scholar 

  • Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K (2014) Effect of biologically synthesized gold nanoparticles onalloxan-induced diabetic rats-an in vivo approach. Colloids Surf. https://doi.org/10.1016/j.colsurfb.2014.07.022

    Article  Google Scholar 

  • Karthikeyan M, Jafar Ahamed A, Karthikeyan C, Vijaya Kumar P (2019) Enhancement of antibacterial and anticancer properties of pure and REM doped ZnO nanoparticles synthesized using gymnema sylvestre leaves extract. SN Appl Sci. https://doi.org/10.1007/s42452-019-0375-x

    Article  Google Scholar 

  • Karthikeyan C, Sisubalan N, Sridevi M, Varaprasad K, Basha MHG, Shucai W, Sadiku R (2021) Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. J Hazard Mater 411:124884. https://doi.org/10.1016/j.jhazmat.2020.124884

    Article  CAS  PubMed  Google Scholar 

  • Khuda F, Zafar Ul Haq, Ihsan Ilahi, Rahim Ullah, Ayub Khan, Hassan Fouad, Atif Ali Khan Khalil, Zaki Ullah, Muhammad Umar Khayam Sahibzada, Yasar Shah, Muhammad Abbas, Tayyaba Iftikhar, Gaber El-Saber Batiha, (2021) Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities, Arabian J Chem, 14, 103343. https://doi.org/10.1016/j.arabjc.2021.103343

  • Kobylinska N, Shakhovsky A, Khainakova O, Klymchuk D, Avdeeva L, Ratushnyak Y (2020) Volodymyr Duplij and nadiia matvieieva ‘Hairy’ root extracts as source for ‘green’ synthesis of silver nanoparticles and medical applications. RSC Advance 10:39434–39446. https://doi.org/10.1039/d0ra07784d

    Article  CAS  Google Scholar 

  • Krithiga N, Rajalakshmi A, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of clitoria ternatea and solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci. https://doi.org/10.1155/2015/928204

    Article  Google Scholar 

  • Kumar V, Simranjeet Singh, Bhavana Srivastava, Ragini Bhadouria, Ravindra Singh, (2019) Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities, Journal of Environmental Chemical Engineering, 7 103094. https://doi.org/10.1016/j.jece.2019.103094.

  • Kumaran K, Ravikumar A (2022) Sharmila saminathan and janarthanan balasundaram green synthesis of zinc oxide nanoparticles using areca catechu. Encyclopedia Green Mat. https://doi.org/10.1007/978-981-16-4921-9_2-1

    Article  Google Scholar 

  • Kumaresan M, Vijai Anand K, Govindaraju K, Tamilselvan S, Ganesh KumarV, (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria, Microbial Pathogens, 124, 311–315. 10.1016/j. micpath.2018.08.060.

  • Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K (2017) Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala Int J Modern Sci. https://doi.org/10.1016/j.kijoms.2017.10.007

    Article  Google Scholar 

  • Lefojane R, Direko P, Mfengwana P, Mashele S, Matinise N, Maaza M, Sekhoacha M (2020) Green synthesis of nickel oxide (NiO) nanoparticles using spirostachys africana bark extract. Asian J Scientific Res. https://doi.org/10.3923/ajsr.2020.284.291

    Article  Google Scholar 

  • Lingaraju K, Raja Naika H, Nagabhushana H, Jayanna K, Devaraja S, Nagaraju G (2019) Biosynthesis of Nickel oxide Nanoparticles from Euphorbia heterophylla (L.) and their biological application king saud university. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2019.11.003.s

    Article  Google Scholar 

  • Lingaraju K, Raja Naika H, Nagabhushana H, Jayanna K, Devaraja S, Nagaraju G, (2020) Biosynthesis of Nickel oxide Nanoparticles from Euphorbia heterophylla (L.) and their biological Application, Arabian J. Chem., 13 (3) 4712–4719. https://doi.org/10.1016/j.arabjc.2019.11.003.

  • Mageswari A, Ramachandran Srinivasan, Parthiban Subramanian, Nachimuthu Ramesh and Kodiveri Muthukaliannan Gothandam, Nanomaterials: Classification, Biological Synthesis and Characterization, Nanoscience in Food and Agriculture, Agriculture Reviews, https://doi.org/10.1007/978-3-319-48009-1_2.

  • Mayedwa N, Mongwaketsi N, Khamlich S, Kaviyarasu K, Matinise N, Maaza M (2018) Green synthesis of nickel oxide, palladium and palladium oxide synthesized via aspalathus linearis natural extracts: physical properties and mechanism of formation. Appl Surf Sci 446:266. https://doi.org/10.1016/j.apsusc.2017.12.116

    Article  CAS  Google Scholar 

  • Mehmet Fırat B, Cumali keskin, Mehmet Nuri atalar, Ayşe baran, (2021) Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology 11 (1) 365–375. https://doi.org/10.2157/jist.779169.

  • Mohammed Alarjani K, Dina Huessien, Rabab Ahmed Rasheed, Kalaiyarasi M, (2022) Green synthesis of silver nanoparticles by Pisum sativum L. (pea) pod against multidrug resistant foodborne pathogens. J King Saud University–Science, 34, 101897. https://doi.org/10.1016/j.jksus.2022.101897

  • Mohamad NAN, Arham NA, Jai J, Hadi A, (2014) Plant extract as reducing agent in synthesis of metallic nanoparticles: A review, Advance Material Research, 832, 350–355. https://doi.org/10.4028/www.scientific.net/AMR.832.350.

  • Mohamed S, Aref, Salem S. (2020) Salem Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture Biocatalysis and Agricultural Biotechnology 27, 101689 https://doi.org/10.1016/j.bcab.2020.101689

  • Mohamed KY, Soliman, Salem S. Salem, Mohammed Abu-Elghait, Mohamed Salah Azab, (2023) Biosynthesis of Silver and Gold Nanoparticles and Their Efficancy Towards Antibacterial, Antibiofilm, Cytotoxicity, and Antioxidant Activities, Applied Biochemistry and Biotechnology, 195,1158–1183, https://doi.org/10.1007/s12010-022-04199-7

  • Mohammad Y. Alshahrani, Zeeshan Rafi, Nadiyah M. Alabdallah, Ambreen Shoaib, Irfan Ahmad, Mohammed Asiri, Gaffar Sarwar Zaman, Shadma Wahab, Mohd Saeed and Salman Khan, (2021) A Comparative Antibacterial, Antioxidant, and Antineoplastic Potential of Rauwolfia serpentina (L.) Leaf Extract with Its Biologically Synthesized Gold Nanoparticles (R-AuNPs), Plants, 10, 2278. https://doi.org/10.3390/plants10112278.

  • Mohamed AA, Mohammed Abu-Elghait, Nehad E. Ahmed, Salem S. (2021) Salem Correction to: Eco-Friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm and Antifungal Applications, Biological Trace Element Research, 199, 2800–2801, https://doi.org/10.1007/s12011-020-02391-6

  • Moodley JS, Krishna SBN, Pillay K, Sershen PG (2018) Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci: Nanosci Nanotech. https://doi.org/10.1088/2043-6254/aaabb2

    Article  Google Scholar 

  • Muniyappan N, Pandeeswaran M, Augustine Amalraj, (2021) Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti- inflammatory activities, Environmental Chemistry and Ecotoxicology, 3, 117–124. https://doi.org/10.1016/j.enceco.2021.01.002

  • Muthuvel A, Jothibas M, Mohana V, Manoharan C, (2020) Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2020.108086

    Article  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Green-synthesized nano-catalysts and nanomaterials for water treatment: current challenges and future perspectives. J Hazardous Mat. https://doi.org/10.1016/j.jhazmat.2020.123401

    Article  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology—A new hope for medical biology. Environ Toxi Pharma 36:997–1014. https://doi.org/10.1016/j.etap.2013.09.002

    Article  CAS  Google Scholar 

  • Nilavukkarasi M, Vijayakumar S, Prathipa Kumar S, (2020) Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica leaf extract for potent antimicrobial and anti-proliferation efficiency. Mat Sci Energy Techn 3:371–376. https://doi.org/10.1016/j.mset.2020.02.008

    Article  CAS  Google Scholar 

  • Olajire AA, Mohammed AA (2020) Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films. Adv Powder Technol 31(1):211–218. https://doi.org/10.1016/j.apt.2019.10.012

    Article  CAS  Google Scholar 

  • Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf R (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Molecular Struct 20:30432–4. https://doi.org/10.1016/j.molstruc.2020.128107

    Article  CAS  Google Scholar 

  • Pugazhendhi S, Palanisamy PK, Jayavel R (2018) Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Material 79:457–463. https://doi.org/10.1016/j.optmat.2018.04.017

    Article  CAS  Google Scholar 

  • Rahman F, Majed Patwary MA, Bakar Siddique MA, Bashar MS, Haque MA, Akter B, Rashid R, Haque MA, Royhan Uddin AKM (2022) 2022 Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. R Soc Open Sci 9:220858. https://doi.org/10.1098/rsos.220858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumari J, Maria Magdalane C, Siddhardha B, Madhavan J, Ramalingam G, Naif Abdullah Al-Dhabi, Mariadhas Valan Arasu, Ghilan AKM, Duraipandiayan V, Kaviyarasuf K, (2019) Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1 Journal of Photochemistry and Photobiology, B: Biology, https://doi.org/10.1016/j.jphotobiol.2019.111667.

  • Raghavendra R, Fazil MHUT, Verma NK, Arunachalam KD (2019) Green synthesis, characterization and antibacterial evaluation of electrospun nickel oxide nanofibers. Materials Lett 256:126616. https://doi.org/10.1016/j.matlet.2019.126616

    Article  CAS  Google Scholar 

  • Ramesh P, Saravanan K, Manogar P, Johnson J, Vinoth E, Mayakannan M (2021) Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sensing Bio-Sensing Res 31:100399. https://doi.org/10.1016/j.sbsr.2021.100399

    Article  Google Scholar 

  • Rana A, Yadav K, Jagadevan S (2020) A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod 272:122880. https://doi.org/10.1016/j.jclepro.2020.122880

    Article  CAS  Google Scholar 

  • Rangayasami A, Kannan K, Joshi S, Subban M (2020) Bioengineered silver nanoparticles using Elytraria acaulis (LF.) Lindau leaf extract and its biological applications. Biocatalysis Agricultural Biotech 20:30645–9. https://doi.org/10.1016/j.bcab.2020.101690

    Article  Google Scholar 

  • Rastogi A, Marek Zivcak, Oksana Sytar, Hazem M. Kalaji, Xiaolan He, (2017) Sonia Mbarki and Marian Brestic, Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Frontiers in Chemistry, https://doi.org/10.3389/fchem.2017.00078

  • Raufa A, Ahmadb T, Khanb A, Maryamc GU, Ahmadd B, Mabkhote YN, Bawazeerg S, Riazh N, Malikovnai BK, Almarhoonj ZM, Al-Harrasib A (2021) Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artificial Cells, Nanomedi Biotech 49(1):194–203. https://doi.org/10.1080/21691401.2021.1890099

    Article  CAS  Google Scholar 

  • Reddy NV, Huizhen Li, Tianyu Hou, MS Bethu, Zhiqing Ren, Zhijun Zhang, (2021) Phytosynthesis of Silver Nanoparticles using Perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities. Int J Nanomed 16, 15–29. https://doi.org/10.2147/IJN.S265003

  • Rehman S, Farooq R, Jermy R, MousaAsiri S, Ravinayagam V, Jindan RA, Alsalem Z, Shah MA, Reshi Z, Sabit H, Khan FA (2020) A Wild fomes fomentarius for Biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomolecules 10:622. https://doi.org/10.3390/biom10040622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard W (1993) Synthesis and properties of nanophase materials. Mat Sci Eng 168:189–197. https://doi.org/10.1016/0921-5093(93)90726-U

    Article  Google Scholar 

  • Rodríguez-Felix F, Astrid Guadalupe Lopez-Cota, María Jesús Moreno-Vasquez, Abril Zoraida Graciano-Verdugo, Idania Emedith Quintero-Reyes, Carmen Lizette Del-Toro-Sanchez, Jose Agustín Tapia-Hernandez, (2021) Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity, Heliyon, 7, e06923. https://doi.org/10.1016/j.heliyon.2021.e06923.

  • Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Eco-Friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Cluster Sci 30:1425–1434. https://doi.org/10.1007/s10876-019-01584-x

    Article  CAS  Google Scholar 

  • Sahoo V, Panigrahi K (2021) Current applications and future scope in food. J Nanotech 2:3–22. https://doi.org/10.1002/fft2.58

    Article  Google Scholar 

  • Said A, Abu-Elghait M, Atta HM, Salem SS (2023) Antibacterial activity of green synthesized silver nanoparticles using lawsonia inermis against common pathogens from urinary tract infection. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04482-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Salem S. Salem, Amr Fouda, (2020) Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview, Biological Trace Element Research, https://doi.org/10.1007/s12011-020-02138-3

  • Salem SS (2022) Baker’s yeast-mediated silver nanoparticles: characterisation and antimicrobial biogenic tool for suppressing pathogenic microbes. BioNanoScience 12:1220–1229. https://doi.org/10.1007/s12668-022-01026-5

    Article  Google Scholar 

  • Salem S (2023) Salem, A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 128:205. https://doi.org/10.1007/s00203-023-03467-2

    Article  CAS  Google Scholar 

  • Salem SS, Mona SE, Badawy M, Al-Askar AA, Arishi AA, Fathy M (2022) Elkady and Amr H hashem, green biosynthesis of selenium nanoparticles using orange peel waste: characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 12:893. https://doi.org/10.3390/life12060893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem, S. Salem, (2022) Bio-fabrication of Selenium nanoparticles Using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens, applied biochemistry and Biotechnology 194, 1898-1910, https://doi.org/10.1007/s12010-022-03809-8

  • Salem S. Salem, Eman N. Hammad, Asem A. Mohamed, Wagdi El-Dougdoug, (2023) A Comprehensive Review of Nanomaterials: Types, Synthesis, Characterization, and Applications, Bio-interface research in applied chemistry, 13 (1), 41, https://doi.org/10.33263/BRIAC131.041

  • Samuel MS, Ravikumar M, John A, Selvarajan E, Himanshu Patel P, Sharath Chander J, Soundarya SV, Balaji R, Chandrasekar N (2022) A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 12:459. https://doi.org/10.3390/catal12050459

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific J Tropical Med. https://doi.org/10.1016/S1995-7645(14)60171-1

    Article  Google Scholar 

  • Santhoshkumar J, Venkat Kumar S, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Eff Techn. https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  • Schneider JJ (1997) Nanomaterials: synthesis, properties and applications. IOP Publishing, Bristol

    Google Scholar 

  • Senthilkumar S, Ashok M, Kashinath L, Sanjeeviraja C, Rajendran A (2017) Phytosynthesis and characterization of TiO2 Nanoparticles using Diospyros ebenum leaf extract and their antibacterial and Photocatalytic degradation of crystal violet. Smart Sci. https://doi.org/10.1080/23080477.2017.1410012

    Article  Google Scholar 

  • Seydi N, Sania Saneei, Ali R. Jalalvand, Mohammad Mahdi Zangeneh, Akram Zangeneh, Reza Tahvilian, Elham Pirabbasi, (2019) Synthesis of titanium nanoparticles using Allium eriophyllum Boiss aqueous extract by green synthesis method and evaluation of their remedial properties Applied Organometallic Chemistry, 33:e519, 110.1002/aoc.5191

  • Sharma TSK, Selvakumar K, Hwa KY, Sami P, Kumaresan M (2019) Biogenic fabrication of gold nanoparticles using Camellia japonica L. leaf extract and its biological evaluation. J material res tech 8(1):1412–1418. https://doi.org/10.1016/j.jmrt.2018.10.006

    Article  CAS  Google Scholar 

  • Shimi AK, Ahmed HM, Wahab M, Katheria S, Wabaidur SM, Eldesoky GE, Islam MA, Rane KP (2022) Synthesis and Applications of green synthesized TiO2 nanoparticles for photocatalytic dye degradation and antibacterial activity Hindawi. J Nanomat 9:7060388. https://doi.org/10.1155/2022/7060388

    Article  CAS  Google Scholar 

  • Shushay Hagos G, Marshet Getaye Sendeku, (2019) New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview, SN Applied Sciences, 1:928. https://doi.org/10.1007/s42452-019-0931-4

  • Singh J, Tripathi J, Sharma M, Nagar S, Sharma A (2021) Study of structural, optical properties and antibacterial effects of silver nanoparticles synthesized by green synthesis method. Mat Today: Proceed 46:2294–2297. https://doi.org/10.1016/j.matpr.2021.04.086

    Article  CAS  Google Scholar 

  • Reetika Singh, Christophe Hano, Gopal Nath and Bechan Sharma, (2021) Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas L. and Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria, Biomolecules 11, 299. https://doi.org/10.3390/biom11020299.

  • Siraj Uddin, Luqman Bin Safdar, Saeed Anwar, Javed Iqbal, Sabiha Laila, Banzeer Ahsan Abbasi, Muhammad Saqib Saif, Musrat Ali, Abdul Rehman, Abdul Basit, Yong Wang and Umar Masood Quraishi, Green Synthesis of Nickel Oxide Nanoparticles from Berberi balochistanica Stem for Investigating Bioactivities, Molecules (2021), https://doi.org/10.3390/molecules26061548

  • Sirelkhatim A, Shahrom Mahmud, Azman Seeni, Noor Haida Mohamad Kaus, Ling Chuo Ann Siti Khadijah Mohd Bakhori, Habsah Hasan, Dasmawati Mohamad, review on zinc oxide nanoparticles: antibacterial activity and Toxicity Mechanism. Nano-Micro Lett. https://doi.org/10.1007/s40820-015-0040-x.

  • Sivasankarapillai VS, Krishnamoorthy N, Eldesoky Gaber E, Wabaidur SM, Islam MA, Dhanusuraman R, Ponnusamy VK (2022) One-pot green synthesis of ZnO nanoparticles using Scoparia Dulcis plant extract for antimicrobial and antioxidant activities. Applied Nanoscience. https://doi.org/10.1007/s13204-022-02610-7

    Article  PubMed  PubMed Central  Google Scholar 

  •  Sankar Sivasankarapillai V, Nishkala Krishnamoorthy, Gaber E. Eldesoky Saikh Mohammad Wabaidur,Md Ataul IslamRagupathy Dhanusuraman, Vinoth Kumar Ponnusamy, One-pot green synthesis of ZnO nanoparticles using Scoparia Dulcis plant extract for antimicrobial and antioxidant activities, Applied Nanoscience, https://doi.org/10.1007/s13204-022-02610-7.

  • Somayeh Layeghi G, Jafar Jalaei, Mehdi Fazeli, Parastoo Memarian, Seyed Shahram Shekarforoush, (2018) Evaluation of ‘green’ synthesis and biological activity of gold nanoparticles using Tragopogon dubius leaf extract as an antibacterial agent, IET Nanobiotechnology, 1751–8741. https://doi.org/10.1049/iet-nbt.2018.5073.

  • Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, Ramachandran S, Ayyasamy R, Pugazhendhi A (2019) Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish Embryos. Process Biochem 80:197–202. https://doi.org/10.1016/j.procbio.2019.02.010

    Article  CAS  Google Scholar 

  • Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology 14:73. https://doi.org/10.1186/s12951-016-0225-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  • Sunderam V, Thiyagarajan D, Vishal Lawrence A, Sameer Shaik Mohammed S , Selvara jA., (2018) In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract, Saudi Journal of Biological Sciences, 18, 30298–5. https://doi.org/10.1016/j.sjbs. 2018.12.001.

  • Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Nithya P, Sumathi R, (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method, Journal of Photochemistry and Photobiology, B: Biology, 171, 117–124. https://doi.org/10.1016/j.jphotobiol.2017.05.003.

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles, Nanomedicine: Nanotechnology. Bio Med 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002

    Article  CAS  Google Scholar 

  • Thakur BK, Kumar A, Kumar D (2019) Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S Afr J Bot 124:223–227. https://doi.org/10.1016/j.sajb.2019.05.024

    Article  CAS  Google Scholar 

  • Thangamani N, Bhuvaneshwari N, (2019) Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chemical Physics Letters 732, 136587. https://doi.org/10.1016/j.cplett.2019.07.015.

  • Theophil Ananda G, Nithiyavathia R, Ramesha R, John Sundaram S, Kaviyarasu K (2020) Structural and optical properties of nickel oxide nanoparticles: investigation of antimicrobial applications. Surfaces Interfaces 18:100460. https://doi.org/10.1016/j.surfin.2020.100460

    Article  CAS  Google Scholar 

  • Umavathi S, Mahboob S, Govindarajan M, Al-Ghanim KA, Zubair Ahmed P, Virik NAM, Subash M, Kasi Gopinat C (2021) Green synthesis of ZnO nanoparticles for antimicrobial and vegetative growth applications: A novel approach for advancing efficient high quality health care to human wellbeing. Saudi J Bio Sci 28:1808–1815. https://doi.org/10.1016/j.sjbs.2020.12.025

    Article  CAS  Google Scholar 

  • Vijaya Kumar P, Mary Jelastin Kala S, Prakash KS (2018) synthesis of gold nanoparticles using xanthium strumarium leaves extract and their antimicrobial studies: a green approach. Rasayan J Chemi 11(4):1544–1551. https://doi.org/10.3178/RJC.2018.1144044

    Article  Google Scholar 

  • Vijaya Kumar P, Jafar Ahamed A, Karthikeyan M (2019) Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl Sci 1:1083. https://doi.org/10.1007/s42452-019-1113-0

    Article  CAS  Google Scholar 

  •  Vijayaram S, Hary Razafndralambo, Yun-Zhang Sun, Seerangaraj Vasantharaj, Hamed Ghafarifarsani, Seyed Hossein Hoseinifar Mahdieh Raeeszadeh, (2022) Applications of Green Synthesized Metal Nanoparticles - a Review, Biological Trace Element Research, https://doi.org/10.1007/s12011-023-03645-9

  • Vinodhini S, Scholastica Mary Vithiya B, Augustine Arul Prasad T , (2022) Green synthesis of silver nanoparticles by employing the Allium fistulosum, Tabernaemontana divaricate and Basella alba leaf extracts for antimicrobial applications, J King Saud University–Science, 34, 101939. https://doi.org/10.1016/j.jksus.2022.101939.

  • Vinotha V, Iswarya A, Thaya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Vaseeharan B (2019) Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. J Photochem Photobiol. https://doi.org/10.1016/j.jphotobiol.2019.111541

    Article  Google Scholar 

  • Vinotha V, Iswarya A, Thaya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN (2019) Baskaralingam Vaseeharan synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. J Photochem Photobiol, B 197:111541. https://doi.org/10.1016/j.jphotobiol.2019.111541

    Article  CAS  PubMed  Google Scholar 

  • Vivek Dhand L, Soumya S. Bharadwaj, Chakra Shilpa, Deepika Bhatt B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng. https://doi.org/10.1016/j.msec.2015.08.018

    Article  Google Scholar 

  • Wang Yong, Maksimuk Sean, Shen Rui, Yang Hong (2007) Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chem 9(1051–1056):1051. https://doi.org/10.1039/b618933d

    Article  CAS  Google Scholar 

  • Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J (2022) Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov 26:102336. https://doi.org/10.1016/j.eti.2022.102336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author (Shandhiya M) would like to thank Karpagam Academy of Higher Education for extending necessary facilities.

Funding

 Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SM: Investigation, Writing – original draft. JB: Conceptualization, Project administration, Data curation SS: Writing-review andæ editing, Project administration, Data curation

Corresponding author

Correspondence to S. Sharmila.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandhiya, M., Janarthanan, B. & Sharmila, S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 206, 52 (2024). https://doi.org/10.1007/s00203-023-03743-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03743-1

Keywords

Navigation