Skip to main content
Log in

Gut microbiome of Crocodylus porosus and cellular stress: inhibition of nitric oxide, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Crocodiles are renowned for their resilience and capacity to withstand environmental stressors, likely influenced by their unique gut microbiome. In this study, we determined whether selected gut bacteria of Crocodylus porosus exhibit anti-inflammatory effects in response to stress, by measuring nitric oxide release, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells. Using the Griess assay, the findings revealed that among several C. porosus gut bacterial isolates, the conditioned media containing the metabolites of two bacterial strains (CP27 and CP36) inhibited nitric oxide production significantly, in response to the positive control, i.e., taxol-treatment. Notably, CP27 and CP36 were more potent at reducing nitric oxide production than senloytic compounds (fisetin, quercetin). Using enzyme linked immunosorbent assays, the production of pro-inflammatory cytokines (IL-1β, TNF-α, PGE2), was markedly reduced by treatment with CP27 and CP36, in response to stress. Both CP27 and CP36 contain a plethora of metabolites to exact their effects [(3,4-dihydroxyphenylglycol, 5-methoxytryptophan, nifedipine, 4-chlorotestosterone-17-acetate, 3-phenoxypropionic acid, lactic acid, f-Honaucin A, l,l-Cyclo(leucylprolyl), 3-hydroxy-decanoic acid etc.], indicative of their potential in providing protection against cellular stress. Further high-throughput bioassay-guided testing of gut microbial metabolites from crocodiles, individually as well as in combination, together with the underlying molecular mechanisms, in vitro and in vivo will elucidate their value in the rational development of innovative therapies against cellular stress/gut dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data is available upon request to the corresponding author.

References

  • Al-Alami O, Sammons J, Martin JH, Hassan HT (1998) Divergent effect of taxol on proliferation, apoptosis and nitric oxide production in MHH225 CD34 positive and U937 CD34 negative human leukaemia cells. Leuk Res 22(10):939–945

    Article  CAS  PubMed  Google Scholar 

  • Arcidiacono S, Soares JW, Philip Karl J, Chrisey L, Dancy CPT, Goodson M, Gregory F, Hammamieh R, Loughnane NK, Kokoska R, Riddle CAPT (2018) The current state and future direction of DoD gut microbiome research: a summary of the first DoD gut microbiome informational meeting. Stand in Genomic Sci 13:5

    Article  Google Scholar 

  • Behl T, Rana T, Sehgal A, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bhatia S, Sachdeva M (2023) Phytochemicals targeting nitric oxide signaling in neurodegenerative diseases. Nitric Oxide 130:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Rad Biol Med 43(5):645–657

    Article  CAS  PubMed  Google Scholar 

  • Canossa M, Giordano E, Cappello S, Guarnieri C, Ferri S (2002) Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc Nat Acad Sci 99(5):3282–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaib S, Tchkonia T, Kirkland JL (2022) Cellular senescence and senolytics: the path to the clinic. Nat Med 28(8):1556–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    Article  CAS  PubMed  Google Scholar 

  • Esch T, Stefano GB, Fricchione GL, Benson H (2002) Stress-related diseases-a potential role for nitric oxide. Med Sci Monit 8(6):103–118

    Google Scholar 

  • Golovatscka V, Ennes H, Mayer EA, Bradesi S (2012) Chronic stress-induced changes in pro-inflammatory cytokines and spinal glia markers in the rat: a time course study. Neuroimmunomod 19(6):367–376

    Article  CAS  Google Scholar 

  • Grebenchtchikov N, van der Ven-Jongekrijg J, Pesman GJ, Geurts-Moespot A, van der Meer JW, Sweep FC (2005) Development of a sensitive ELISA for the quantification of human tumour necrosis factor-α using 4 polyclonal antibodies. Eur Cyto Net 16(3):215–222

    CAS  Google Scholar 

  • Han Y, Kim SY (2023) Endothelial senescence in vascular diseases: current understanding and future opportunities in senotherapeutics. Exp Mol Med 55(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janke A, Gullberg A, Hughes S, Aggarwal RK, Arnason U (2005) Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre-K/T divergence times for most crocodilians. J Mol Evo 61:620–626

    Article  CAS  Google Scholar 

  • Ke J, Yang Y, Che Q, Jiang F, Wang H, Chen Z, Zhu M, Tong H, Zhang H, Yan X, Wang X (2016) Prostaglandin E2 (PGE2) promotes proliferation and invasion by enhancing SUMO-1 activity via EP4 receptor in endometrial cancer. Tumor Biol 37(9):12203–12211

    Article  CAS  Google Scholar 

  • Khan NA, Soopramanien M, Maciver SK, Anuar TS, Sagathevan K, Siddiqui R (2021) Crocodylus porosus gut bacteria: a possible source of novel metabolites. Molecules 26(16):e4999

    Article  Google Scholar 

  • Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107(12):1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laissue JA, Chappuis B, Müller C, Reubi JC, Gebbers JO (1993) The intestinal immune system and its relation to disease. Dig Dis 11(4–5):298–312

    Article  CAS  PubMed  Google Scholar 

  • Lamaudière MT, Arasaradnam R, Weedall GD, Morozov IY (2023) The colorectal cancer microbiota alter their transcriptome to adapt to the acidity, reactive oxygen species, and metabolite availability of gut microenvironments. Msphere 27:e00627-e722

    Google Scholar 

  • Leeming ER, Johnson AJ, Spector TD, Le Roy CI (2019) Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11(12):2862

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyte JM, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Dinan TG, Cryan JF, Clarke G (2020) Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil 32(11):e13881

    Article  CAS  PubMed  Google Scholar 

  • Moens E, Veldhoen M (2012) Epithelial barrier biology: good fences make good neighbours. Immunol 135(1):1–8

    Article  CAS  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6(12):3051–3064

    Article  CAS  PubMed  Google Scholar 

  • Pagliaro P (2003) Differential biological effects of products of nitric oxide (NO) synthase: it is not enough to say NO. Life Sci 73(17):2137–2149

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Karmakar S, Bhattacharyya S, Purkait K, Mukherjee A (2015) Nitric oxide release by N-(2-chloroethyl)-N-nitrosoureas: a rarely discussed mechanistic path towards their anticancer activity. RSC Adv 5(3):2137–2146

    Article  CAS  Google Scholar 

  • Siddiqui R, Khan NA (2023) Microbiome and one health: potential of novel metabolites from the gut microbiome of unique species for human health. Microorganisms 11(2):481

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui R, Maciver S, Elmoselhi A, Soares NC, Khan NA (2021) Longevity, cellular senescence and the gut microbiome: lessons to be learned from crocodiles. Heliyon 7(12):e08594

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui R, Maciver SK, Khan NA (2022) Gut microbiome–immune system interaction in reptiles. J Appl Microbiol 132(4):2558–2571

    Article  PubMed  Google Scholar 

  • Siddiqui R, Akbar N, Soares NC, Al-Hroub HM, Semreen MH, Maciver SK, Khan NA (2023) Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut. Future Sci OA 9(5):FSO861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockdale MT, Benton MJ (2021) Environmental drivers of body size evolution in crocodile-line archosaurs. Comm Biol 4(1):38

    Article  Google Scholar 

  • Tse JK (2017) Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders. ACS Chem Neurosci 8(7):1438–1447

    Article  CAS  PubMed  Google Scholar 

  • Vieira LM, Nunes VDS, Amaral MDA, Oliveira AC, Hauser-Davis RA, Campos RC (2011) Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area. Brazil J Environ Monit 13(2):280–287

    Article  CAS  PubMed  Google Scholar 

  • Willson NL, Van TT, Lever J, Moore RJ, Stanley D (2019) Characterisation of the intestinal microbiota of commercially farmed saltwater crocodiles, Crocodylus porosus. Appl Microbiol Biotechnol 103:8977–8985

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9(3):955

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Air Force Office of Scientific Research (AFOSR), grant number: FA 8655-20-1-7004.

Author information

Authors and Affiliations

Authors

Contributions

RS and NAK conceptualized the study amid discussions with SKM. NA and RS carried out all experimental work amid critical discussions with NAK, AMA, HF, and SKM. RS prepared the first draft, while SKM, NA and NAK corrected and finalized the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Naveed Ahmed Khan.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

No animals or humans were used in this study.

Additional information

Communicated by Ran Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, R., Akbar, N., Maciver, S.K. et al. Gut microbiome of Crocodylus porosus and cellular stress: inhibition of nitric oxide, interleukin 1-beta, tumor necrosis factor-alpha, and prostaglandin E2 in cerebrovascular endothelial cells. Arch Microbiol 205, 344 (2023). https://doi.org/10.1007/s00203-023-03680-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03680-z

Keywords

Navigation