Skip to main content
Log in

Effect of respiratory tract co-colonizers on initial attachment of Neisseria meningitidis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Respiratory tract is a complex system comprising of unique microbiota inhabitants. Neisseria meningitidis, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa and Klebsiella pneumoniae are few prevalent bacteria in the community composition during lung infections. Although, N. meningitidis resides asymptomatically in nasopharynx of the human host, it can cause fatal infections like meningitis. However, factors affecting transit from carriage to symptomatic infection are not well understood. Various host metabolites and environmental conditions affect the virulence of bacteria. Here, we report that presence of co-colonizers significantly reduces the initial attachment of N. meningitidis to A549 nasopharyngeal epithelial cells. Further, significant decrease in invasion to A549 nasopharyngeal epithelial cells was observed. Moreover, survival in J774A.1 murine macrophage also increases significantly when conditioned media (CM) from S. pyogenes and L. rhamnosus is used for culturing N. meningitidis. The increase in survival could be attributed to increased capsule synthesis. The gene expression studies revealed increased expression of siaC and ctrB in CM prepared from the growth S. pyogenes and L. rhamnosus. Overall, the results suggest change in the virulence of N. meningitidis is assisted by lung microbiota.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data could be available from the corresponding author on reasonable request.

References

  • Banerji R, Kanojiya P, Saroj SD (2020) Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Crit Rev MicrobIol 46(2):136–146

    Article  PubMed  Google Scholar 

  • Breakwell DP, Moyes RB, Reynolds J (2009) Differential staining of bacteria: capsule stain. Curr Protoc Microbiol 15(1):A3I1-A3I4

    Google Scholar 

  • Chonmaitree T, Jennings K, Golovko G, Khanipov K, Pimenova M, Patel JA, McCormick DP, Loeffelholz FY (2017) Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS One 12(7):1–15

    Article  Google Scholar 

  • Coffey BM, Anderson GG (2014) Biofilm formation in the 96-well microtiter plate. Methods Mol Biol (Clifton, N.J.) 1149:631–641

    Article  Google Scholar 

  • Curran CS, Bolig T, Torabi-Parizi P (2018) Mechanisms and targeted therapies for pseudomonas aeruginosa lung infection. AJRCCM 197(6):708–727

    CAS  Google Scholar 

  • De Klerk N, Maudsdotter L, Gebreegziabher H, Saroj SD, Eriksson B, Eriksson OS, Roos S, Linden S, Sjolinder H, Jonsson AB (2016) Lactobacilli reduce Helicobacter pylori attachment to host gastric epithelial cells by inhibiting adhesion gene expression. Infect Immun 84(5):1526–1535

    Article  PubMed  PubMed Central  Google Scholar 

  • De Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB (2017) The host cell transcription factor EGR1 is induced by bacteria through the EGFR–ERK1/2 pathway. Front Cell Infect 7:16

    Google Scholar 

  • Engman J, Eriksson OS, Saroj SD, Zguna N, Lloris-Garcera P, Ilag LL, Jonsson AB (2017) Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal. PLoS Pathog 13(4):1–27

    Google Scholar 

  • Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith H, Tang CM (2005) Available carbon source influences the resistance of Neisseria meningitidis against complement. JEM 201(10):1637–1645

    Article  CAS  Google Scholar 

  • Fang L, Zhou L, Tamm M, Roth M (2021) OM-85 Broncho-Vaxom®, a bacterial lysate, reduces SARS-CoV-2 binding proteins on human bronchial epithelial cells. Biomedicines 9(11):1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomby P, Cherlin AJ (2011) Role of microbiota in immunity and inflammation. NIH 72(2):181–204

    Google Scholar 

  • Guilhen C, Forestier C, Balestrino D (2017) Micro Review Biofilm dispersal : multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol 105:188–210

    Article  CAS  PubMed  Google Scholar 

  • Hathaway LJ, Bättig P, Reber S, Rotzetter JU, Aebi S, Hauser C, Heller M, Kadioglu A, Mühlemann K (2014) Streptococcus pneumoniae detects and responds to foreign bacterial peptide fragments in its environment. Open Biol 4(4):130224

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanojiya P, Joshi R, Saroj SD (2022a) Availability of polyamines affects virulence and survival of Neisseria meningitidis. J Microbiol 60(6):640–648

    Article  CAS  PubMed  Google Scholar 

  • Kanojiya P, Joshi R, Saroj SD (2022b) The source of carbon and nitrogen differentially affects the survival of Neisseria meningitidis in macrophages and epithelial cells. Arch Microbiol 204(7):1–9

    Article  Google Scholar 

  • Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect 4:1–7

    Google Scholar 

  • Lux J, Holivololona L, San Millan Gutierrez R, Hilty M, Ramette A, Heller M, Hathaway LJ (2022) AmiA and AliA peptide ligands are secreted by Klebsiella pneumoniae and inhibit growth of Streptococcus pneumoniae. Sci Rep. 12(1):22268

    Article  PubMed  PubMed Central  Google Scholar 

  • Maekawa T, Kashkar H, Coll NS (2023) Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ 30(2):258–268

    Article  PubMed  Google Scholar 

  • Nasher F, Aguilar F, Aebi S, Hermans PW, Heller M, Hathaway LJ (2018) Peptide ligands of AmiA, AliA, and AliB proteins determine pneumococcal phenotype. Front Microbiol 9:3013

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizza M, Rappuoli R (2015) Neisseria meningitidis: pathogenesis and immunity. Curr Opin Microbiol 23:68–72

    Article  CAS  PubMed  Google Scholar 

  • Raudoniute J, Bironaite D, Bagdonas E, Kulvinskiene I (2023) Human airway and lung microbiome at the crossroad of health and disease (Review). Exp Ther Med 25(1):18

    Article  PubMed  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51(3):365–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saroj SD, Maudsdotter L, Tavares R, Jonsson AB (2016) Lactobacilli interfere with streptococcus pyogenes hemolytic activity and adherence to host epithelial cells. Front Microbiol 7:1–8

    Article  Google Scholar 

  • Schoen C, Kischkies L, Elias J, Ampattu BJ (2014) Metabolism and virulence in Neisseria meningitidis. Front Cell Infect 4:1–16

    Google Scholar 

  • Sigurlásdóttir S, Saroj SD, Eriksson O, Jonsson AB (2018) Quantification of Neisseria meningitidis adherence to human epithelial cells by colony counting. Bio-Protoc 8(3):1–10

    Article  Google Scholar 

  • S. Sigurlásdóttir (2018) Influence of host and bacterial factors during Neisseria meningitidis colonization (Issue December)

  • Smakman F, Hall AR (2022) Exposure to lysed bacteria can promote or inhibit growth of neighboring live bacteria depending on local abiotic conditions. FEMS Microbiol Ecol 98(2):fiac011

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorbara MT, Pamer EG (2019) Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol 12(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Spinosa MR, Progida C, Talà A, Cogli L, Alifano P (2007) The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 75(7):3594–3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369(9580):2196–2210

    Article  PubMed  Google Scholar 

  • Swain CL, Martin DR, Sim D, Jordan TW, Mackichan JK (2017) Survival of Neisseria meningitidis outside of the host: environmental effects and differences among strains. Epidemiol Infect 145(16):3525–3534

    Article  CAS  PubMed  Google Scholar 

  • Tunbridge AJ, Stevanin TM, Lee M, Marriott HM, Moir JW, Read RC, Dockrell DH (2006) Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms. Infect Immun 74(1):729–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzeng YL, Thomas J, Stephens DS (2016) Regulation of capsule in Neisseria meningitidis. Crit Rev Microbiol 42(5):759–772

    CAS  PubMed  Google Scholar 

  • Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr Rev 299(23):1278–1280

    Google Scholar 

  • Yagi K, Huffnagle GB, Lukacs NW, Asai N (2021) The lung microbiome during health and disease. Int J Mol Sci 22(19):1–13

    Article  Google Scholar 

Download references

Acknowledgements

PK is supported by the junior research fellowship program of the Symbiosis International (Deemed University).

Funding

The work was supported by the Ramalingaswami fellowship program of Department of Biotechnology, India under grant BT/RLF/Re-entry/41/2015.

Author information

Authors and Affiliations

Authors

Contributions

PK prepared the first draft, performed the assays and analyzed the data. SD conceptualized the idea, examined the draft and analyzed data. PK and SD finalized the draft.

Corresponding author

Correspondence to Sunil D. Saroj.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

No animals were used in the experiments. Therefore, ethics approval was not required.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanojiya, P., Saroj, S.D. Effect of respiratory tract co-colonizers on initial attachment of Neisseria meningitidis. Arch Microbiol 205, 273 (2023). https://doi.org/10.1007/s00203-023-03612-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03612-x

Keywords

Navigation