Skip to main content
Log in

Pneumococcal wall teichoic acid is required for the pathogenesis of Streptococcus pneumoniae in murine models

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pneumococcal asymptomatic colonization of the respiratory tracts is a major risk for invasive pneumococcal disease. We have previously shown that pneumococcal wall teichoic acid (WTA) was involved in pneumococcal infection of sepsis and adherence to epithelial and endothelial cells. In this study, we investigated the contribution of pneumococcal WTA to bacterial colonization and dissemination in murine models. The result showed that nasopharynx colonizing D39 bacterial cells have a distinct phenotype showing an increased exposure of teichoic acids relative to medium-grown bacteria. The WTA-deficient mutants were impaired in their colonization to the nasopharynx and lungs, and led to a mild inflammation in the lungs at 36 h post-inoculation. Pretreatment of the murine nares with WTA reduced the ability of wild type D39 bacteria to colonize the nasopharynx. In addition, the WTA-deficient strain was impaired in its ability to invade the blood and brain following intranasal administration. WTA-deficient D39 strain was reduced in C3 deposition but was more susceptible to the killing by the neutrophils as compared with its parent strain. Our results also demonstrated that the WTA enhanced pneumococcal colonization and dissemination independently of the host strains. These results indicate that WTA plays an important role in pneumococcal pathogenesis, both in colonization and dissemination processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogaert, D., de Groot, R., and Hermans, P.W.M. 2004. Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect. Dis. 4, 144–154.

    Article  CAS  PubMed  Google Scholar 

  • Bui, N.K., Eberhardt, A., Vollmer, D., Kern, T., Bougault, C., Tomasz, A., Simorre, J.P., and Vollmer, W. 2012. Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal. Biochem. 421, 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Cundell, D.R., Gerard, N.P., Gerard, C., Idanpaan-Heikkila, I., and Tuomanen, E.I. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438.

    Article  CAS  PubMed  Google Scholar 

  • Draing, C., Pfitzenmaier, M., Zummo, S., Mancuso, G., Geyer, A., Hartung, T., and von Aulock, S. 2006. Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J. Biol. Chem. 281, 33849–33859.

    Article  CAS  PubMed  Google Scholar 

  • Gehre, F., Spisek, R., Kharat, A.S., Matthews, P., Kukreja, A., Anthony, R.M., Dhodapkar, M.V., Vollmer, W., and Tomasz, A. 2009. Role of teichoic acid choline moieties in the virulence of Streptococcus pneumoniae. Infect. Immun. 77, 2824–2831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gisch, N., Kohler, T., Ulmer, A.J., Muthing, J., Pribyl, T., Fischer, K., Lindner, B., Hammerschmidt, S., and Zahringer, U. 2013. Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J. Biol. Chem. 288, 15654–15667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grundling, A. and Schneewind, O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104, 8478–8483.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammerschmidt, S., Wolff, S., Hocke, A., Rosseau, S., Muller, E., and Rohde, M. 2005. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect. Immun. 73, 4653–4667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu, H.E., Shutt, K.A., Moore, M.R., Beall, B.W., Bennett, N.M., Craig, A.S., Farley, M.M., Jorgensen, J.H., Lexau, C.A., Petit, S., et al. 2009. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl. J. Med. 360, 144–156.

    Article  Google Scholar 

  • Hummell, D.S., Swift, A.J., Tomasz, A., and Winkelstein, J.A. 1985. Activation of the alternative complement pathway by pneumococcal lipoteichoic acid. Infect. Immun. 47, 384–387.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadioglu, A., Weiser, J.N., Paton, J.C., and Andrew, P.W. 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6, 288–301.

    Article  CAS  PubMed  Google Scholar 

  • Kawai, Y., Marles-Wright, J., Cleverley, R. M., Emmins, R., Ishikawa, S., Kuwano, M., Heinz, N., Bui, N.K., Hoyland, C.N., Ogasawara, N., et al. 2011. A widespread family of bacterial cell wall assembly proteins. EMBO J. 30, 4931–4941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, J.O. and Weiser, J.N. 1997. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177, 368–377.

    Article  Google Scholar 

  • Liu, Y., Wang, H., Chen, M., Sun, Z., Zhao, R., Zhang, L., Zhang, H., Wang, L., Chu, Y., and Ni, Y. 2008. Serotype distribution and antimicrobial resistance patterns of Streptococcus pneumoniae isolated from children in china younger than 5 years. Diagn. Microbiol. Infect. Dis. 61, 256–263.

    Article  CAS  PubMed  Google Scholar 

  • Montagnani, F., Fanetti, A., Stolzuoli, L., Croci, L., Arena, F., Zanchi, A., and Cellesi, C. 2008. Pneumococcal disease in a paediatric population in a hospital of central italy: A clinical and microbiological case series from 1992 to 2006. J. Infect. 56, 179–184.

    Article  PubMed  Google Scholar 

  • O’Brien, K. L., Wolfson, L.J., Watt, J.P., Henkle, E., Deloria-Knoll, M., McCall, N., Lee, E., Mulholland, K., Levine, O.S., and Cherian, T. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 374, 893–902.

    Article  PubMed  Google Scholar 

  • Sabharwal, V., Ram, S., Figueira, M., Park, I.H., and Pelton, S.I. 2009. Role of complement in host defense against pneumococcal otitis media. Infect. Immun. 77, 1121–1127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shainheit, M.G., Mule, M., and Camilli, A. 2014. The core promoter of the capsule operon of Streptococcus pneumoniae is necessary for colonization and invasive disease. Infect. Immun. 82, 694–705.

    Article  PubMed Central  PubMed  Google Scholar 

  • Skovsted, I.C., Kerrn, M.B., Sonne-Hansen, J., Sauer, L.E., Nielsen, A.K., Konradsen, H.B., Petersen, B.O., Nyberg, N.T., and Duus, J.O. 2007. Purification and structure characterization of the active component in the pneumococcal 22f polysaccharide capsule used for adsorption in pneumococcal enzyme-linked immunosorbent assays. Vaccine 25, 6490–6500.

    Article  CAS  PubMed  Google Scholar 

  • Smith, B.L. and Hostetter, M.K. 2000. C3 as substrate for adhesion of Streptococcus pneumoniae. J. Infect. Dis. 182, 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Standish, A.J. and Weiser, J.N. 2009. Human neutrophils kill Streptococcus pneumoniae via serine proteases. J. Immunol. 183, 2602–2609.

    Article  CAS  PubMed  Google Scholar 

  • Tomasz, A. 1968. Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: Chain formation, loss of transformability, and loss of autolysis. Proc. Natl. Acad. Sci. USA 59, 86–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weidenmaier, C., Kokai-Kun, J.F., Kristian, S.A., Chanturiya, T., Kalbacher, H., Gross, M., Nicholson, G., Neumeister, B., Mond, J.J., and Peschel, A. 2004. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245.

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier, C. and Peschel, A. 2008. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Weiser, J.N., Austrian, R., Sreenivasan, P.K., and Masure, H.R. 1994. Phase variation in pneumococcal opacity: Relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62, 2582–2589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiser, J.N., Markiewicz, Z., Tuomanen, E.I., and Wani, J.H. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall phsiology, and nasopharyngeal colozition by Streptococcus pneumoniae. Infect. Immun. 64, 2240–2246.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu, K., Huang, J., Zhang, Y., Xu, W., Xu, H., Wang, L., Cao, J., Zhang, X., and Yin, Y. 2014. A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae: Implications for bacterial virulence. J. Bacteriol. 196, 3324–3334.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaifeng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Wang, L., Huang, J. et al. Pneumococcal wall teichoic acid is required for the pathogenesis of Streptococcus pneumoniae in murine models. J Microbiol. 53, 147–154 (2015). https://doi.org/10.1007/s12275-015-4616-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4616-4

Keywords

Navigation