Skip to main content
Log in

Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic-resistant pathogens have become a great universal health concern. Antimicrobial peptides (AMPs) are small amphipathic and cationic polypeptides with high therapeutic potential against various microorganisms containing drug-resistant strains. Two major groups of these peptides, which have antibacterial activity against Gram-positive and Gram-negative bacteria, antiviral activity, and even antifungal activity, are defensins and cathelicidins. Hybridization of various AMPs is an appropriate approach to achieving new fusion AMPs with high antibacterial activity but low cellular toxicity. In the current research, the amino-acid sequence of human cathelicidin LL-37 (2-31) and Human beta-defensin (hBD)-129 were combined, and the fusion protein was evaluated by bioinformatics tool. The designed AMP gene sequence was commercially synthesized and cloned in the pET-28a expression vector. The LL-37/hBD-129 fusion protein was expressed in E.coli BL21-gold (DE3). The expression of the recombinant protein was evaluated using the SDS-PAGE method. The LL37/hBD-129 was successfully expressed as a recombinant hybrid AMP in E.coli BL21-gold (DE3) strain. Purification of the expressed AMP was performed by Ni–NTA column affinity chromatography, and the purified AMP was validated using the Western blot technic. Finally, the antimicrobial activity of the fusion AMP against Staphylococcus aureus and Escherichia coli bacteria was assessed. Based on the in silico analysis and experimental evaluations, the fusion AMP showed a significant antimicrobial effect on E. coli and Staphylococcus aureus bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article.

References

  • Adermann K (2006) Defensins as anti-infective and immunomodulatory agents. Expert Opin Ther Pat 16(9):1223–1234

    Article  CAS  Google Scholar 

  • Afacan NJ, Yeung ATY, Pena OM, Hancock REW (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18(6):807–19

    Article  CAS  PubMed  Google Scholar 

  • Al Tall Y, Abualhaijaa A, Alsaggar M, Almaaytah A, Masadeh M, Alzoubi KH (2019) Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infect Drug Resist 12:1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechinger B, Gorr S-U (2017) Antimicrobial peptides: mechanisms of action and resistance. J Dent Res 96(3):254–260

    Article  CAS  PubMed  Google Scholar 

  • Boman H, Wade D, Boman I, Wåhlin B, Merrifield R (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 259(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  PubMed  Google Scholar 

  • Carretero M, Escámez MJ, García M, Duarte B, Holguín A, Retamosa L et al (2008) In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Investig Dermatol 128(1):223–236

    Article  CAS  PubMed  Google Scholar 

  • Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49(7):2845–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobo ER, Chadee K (2013) Antimicrobial human β-defensins in the colon and their role in infectious and non-infectious diseases. Pathogens 2(1):177–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  • Fellermann K, Stange EF (2001) Defensins–innate immunity at the epithelial frontier. Eur J Gastroenterol Hepatol 13(7):771–776

    Article  CAS  PubMed  Google Scholar 

  • Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci. https://doi.org/10.1002/0471140864.ps0524s61

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong G-L, Wei Y, Wang Z-Z (2018) Functional expression, purification, and antimicrobial activity of a novel antimicrobial peptide MLH in Escherichia coli. Prep Biochem Biotechnol 48(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating p K as and adding missing hydrogens to macromolecules. Nucleic Acids Res 33(suppl_2):W368–W371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, Salcedo R (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238(2):325–332

    Article  CAS  PubMed  Google Scholar 

  • Han JE, Alvarez JA, Jones JL, Tangpricha V, Brown MA, Hao L et al (2017) Impact of high-dose vitamin D3 on plasma free 25-hydroxyvitamin D concentrations and antimicrobial peptides in critically ill mechanically ventilated adults. Nutrition 38:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  • Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  CAS  PubMed  Google Scholar 

  • Kim S-j, Quan R, Lee S-J, Lee H-K, Choi J-K (2009) Antibacterial activity of recombinant hCAP18/LL37 protein secreted from Pichia pastoris. J Microbiol 47(3):358–362

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Kim SW, Song JM, Kim SY, Kwon K-C (2019) A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnol 19(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim H, Jang JH, Kim SC, Cho JH (2020) Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. Eur J Med Chem 185:111814

    Article  CAS  PubMed  Google Scholar 

  • Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122

    Article  Google Scholar 

  • Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A (2002) Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives* 210. J Biol Chem 277(19):16941–16951

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Jung SW, Cho AE (2016) Molecular insights into the adsorption mechanism of human β-defensin-3 on bacterial membranes. Langmuir 32(7):1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Retz M, Harder J, Krams M, Kellner U, Hartmann J et al (2002) Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection. BMC Infect Dis 2(1):1–10

    Article  Google Scholar 

  • Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128(17):5776–5785

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wu J, Ying G-G, Luo Z, Feng H (2012) Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl Microbiol Biotechnol 95(6):1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhu M, Chen X, Yang G, Yang T, Yu L et al (2018) Expression and antibacterial activity of hybrid antimicrobial peptide cecropinA-thanatin in Pichia pastoris. Front Lab Med 2(1):23–29

    Article  Google Scholar 

  • Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A et al (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20(9):e216–e230

    Article  CAS  PubMed  Google Scholar 

  • Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Article  Google Scholar 

  • Moon J-Y, Henzler-Wildman KA, Ramamoorthy A (2006) Expression and purification of a recombinant LL-37 from Escherichia coli. Biochim Biophys Acta (BBA) Biomembr 1758(9):1351–1358

    Article  CAS  Google Scholar 

  • Nishimura A, Morita M, Nishimura Y, Sugino Y (1990) A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res 18(20):6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H (2017) Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 26(11):989–998

    Article  CAS  PubMed  Google Scholar 

  • Pane K, Cafaro V, Avitabile A, Torres MDT, Vollaro A, De Gregorio E et al (2018) Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational–experimental platform. ACS Synth Biol 7(9):2105–2115

    Article  CAS  PubMed  Google Scholar 

  • Pazgier M, Hoover D, Yang D, Lu W, Lubkowski J (2006) Human β-defensins. Cell Mol Life Sci CMLS 63(11):1294–1313

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Pedersen MØ, Villegas E, Rivas-Santiago B, Villegas-Moreno J, Amero C et al (2020) Antimicrobial activity and structure of a consensus human β-defensin and its comparison to a novel putative hBD10. Proteins: Struct Funct Bioinform 88(1):175–186

    Article  CAS  Google Scholar 

  • Roux B, Simonson T (1999) Implicit solvent models. Biophys Chem 78(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  • Sørensen O, Arnljots K, Cowland JB, Bainton DF, Borregaard N (1997) The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood, J Am Soc Hematol 90(7):2796–2803

    Google Scholar 

  • Spriestersbach A, Kubicek J, Schäfer F, Block H, Maertens B (2015) Purification of his-tagged proteins. Methods in enzymology, vol 559. Elsevier, pp 1–15

    Google Scholar 

  • Suarez-Carmona M, Hubert P, Delvenne P, Herfs M (2015) Defensins:“simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev 26(3):361–370

    Article  CAS  PubMed  Google Scholar 

  • Sugiarto H, Yu P-L (2004) Avian antimicrobial peptides: the defense role of β-defensins. Biochem Biophys Res Commun 323(3):721–727

    Article  CAS  PubMed  Google Scholar 

  • Thomson JM, Bonomo RA (2005) The threat of antibiotic resistance in gram-negative pathogenic bacteria: β-lactams in peril! Curr Opin Microbiol 8(5):518–524

    Article  CAS  PubMed  Google Scholar 

  • Valore EV, Park CH, Quayle AJ, Wiles KR, McCray P, Ganz T (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Investig 101(8):1633–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  PubMed  Google Scholar 

  • Vandamme D, Landuyt B, Luyten W, Schoofs L (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280(1):22–35

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283(47):32637–32643

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C et al (2019) Design of antimicrobial peptides: progress made with human cathelicidin LL-37. Antimicrob Pept 2019:215–240

    Article  Google Scholar 

  • Wanmakok M, Orrapin S, Intorasoot A, Intorasoot S (2018) Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Gene 671:1–9

    Article  CAS  PubMed  Google Scholar 

  • Watkins RR, Bonomo RA (2016) Overview: global and local impact of antibiotic resistance. Infect Dis Clin 30(2):313–322

    Article  Google Scholar 

  • Wei X, Wu R, Zhang L, Ahmad B, Si D, Zhang R (2018) Expression, purification, and characterization of a novel hybrid peptide with potent antibacterial activity. Molecules 23(6):1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Wenghoefer M (2012) Human defensins: potential tools for clinical applications. Polymers 4(1):691–709

    Article  Google Scholar 

  • Wu R, Wang Q, Zheng Z, Zhao L, Shang Y, Wei X et al (2014) Design, characterization and expression of a novel hybrid peptides melittin (1–13)-LL37 (17–30). Mol Biol Rep 41(7):4163–4169

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Xie H, Su G, Chen D, Yu B, Mao X et al (2019) β-Defensin 129 attenuates bacterial endotoxin-induced inflammation and intestinal epithelial cell apoptosis. Front Immunol. https://doi.org/10.2139/ssrn.3377507

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23(6):291–296

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides in health and disease. Mass Med Soc 347:1199–1200

    Google Scholar 

Download references

Acknowledgements

This study has been written by the authors.

Funding

The study was financially supported by Fasa University of Medical Sciences (Project Number:99094) and was approved by the Ethical Committee of Fasa University of Medical Sciences (IR.FUMS.REC.1399.137).

Author information

Authors and Affiliations

Authors

Contributions

MA and SHM conceived and designed the research. MA, SHM, MHY, and SSHSH conducted experiments. MA, EB contributed analytical tools. All authors wrote the manuscript and approved it.

Corresponding author

Correspondence to Shirin Mahmoodi.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Behmard, E., Yousefi, M.H. et al. Expression, purification and investigation of antibacterial activity of a novel hybrid peptide LL37/hBD-129 by applied comprehensive computational and experimental approaches. Arch Microbiol 205, 199 (2023). https://doi.org/10.1007/s00203-023-03529-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03529-5

Keywords

Navigation