Skip to main content
Log in

Identification of a novel cyclomaltodextrinase annotated as a neopullulanase in the genome of Bacillus cereus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus cereus is a rod-shaped, gram-positive, motile, and β-hemolytic soil bacterium. B. cereus is an opportunistic pathogen, often responsible for human foodborne illness that is caused by ingestion of starchy foods with symptoms of diarrhea and vomiting. Among the numerous amylolytic enzymes in the genome of the pathogen, the one annotated as a putative neopullulanase (NPase) was cloned and its biochemical properties were characterized in this study. The corresponding gene encoded an enzyme of 586 amino acids with a predicted molecular mass of 68.25 kDa. The putative NPase shared 43.7–59.2% of identity with NPases, cyclomaltodextrinases (CDases), and maltogenic amylases from various bacteria, but shared very low similarity with other amylolytic enzymes of B. cereus. The optimal pH and temperature of the enzyme was 6.5 and 37 ℃, respectively. The enzyme activity was decreased by the cations tested in this study and completely inhibited by Co2+ and Cu2+. The purified enzyme showed substrate preference in the order of α-CD > β-CD > starch > maltodextrin > γ-CD and hydrolyzed them mainly to maltose. However, it did not hydrolyze maltose, pullulan, and glycogen. The enzyme was designated herein as a CDase of B. cereus (BcCDase). Furthermore, the enzyme could transfer the sugars released from CDs and maltotriose to acceptor molecules. BcCDase was likely to be involved in the maltodextrin metabolism in B. cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Arnesen LPS, Fagerlund A, Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Article  Google Scholar 

  • Aron MB, Myra KD, Noreen RG, Shennan L, Farideh C, Lewis YG, Renata CG, Jane H, Marc G, David IH, Christopher JL, Fu L, Gabriele HM, James SS, Narmada T, Zhouxi W, Roxanne AY, Dachuan Z, Chanjuan Z, Stephen HB (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:222–226

    Article  Google Scholar 

  • Aroob I, Ahmad N, Rahid N (2021) Cyclodextrin-preferring glycoside hydrolases: properties and applications. Amylase 5:23–37

    Article  Google Scholar 

  • Bae H, Lee S, Park C, Shim J, Lee H, Kim M, Baek J, Roh H, Choi J, Choe E, Ahn D, Park H (2002) Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J Agri Food Chem 50:3309–3316

    Article  CAS  Google Scholar 

  • Bender H (1993) Purification and characterization of a cyclodextrin-degrading enzyme from Flavobacterium sp. Appl Microbiol Biotechnol 39:714–719

    Article  CAS  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cha H, Yoon H, Kim Y, Lee H, Kim J, Kweon K, Oh B, Park K (1998) Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur J Biochem 253:251–262

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Kim Y, Kim T, Lee H, Kim D, Kim J, Lee Y, Lee S, Park K (2000) Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim Biophys Acta 1478:333–340

    Article  CAS  PubMed  Google Scholar 

  • Davaeifar S, Shariati P, Tabandeh F, Yakhchali B (2015) Isolation and identification of a new Bacillus cereus strain and characterization of its neopullulanase. Appl Food Biotech 2:39–45

    CAS  Google Scholar 

  • Doman-Phyka M, Bardowski J (2004) Pullulan degrading enzymes of bacterial origin. Cri Rev Microbiol 30:107–121

    Article  Google Scholar 

  • Galvin MN, Kelly CT, Fogarty WM (1994) Purification and properties of the cyclodextrinase of Bacillus sphaericus ATCC 7055. Appl Microbiol Biotechnol 42:46–50

    Article  CAS  Google Scholar 

  • Han A, Kim H, Park J, Kim J (2022) Characterization of a cold-adapted debranching enzyme and its role in glycogen metabolism and virulence of Vibrio vulnificus MO6-24/O. J Microbiol 60:375–386

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Ara K, Saeki K, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of a gene that encodes a neopullulanase from an alkalophilic Bacillus. Biosci Biotech Biochem 56:514–516

    Article  CAS  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu L, Mazur M, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    Article  CAS  PubMed  Google Scholar 

  • Janeček S (1997) α-Amylase family: molecular biology and evolution. Progr Biophys Mol Biol 67:67–97

    Article  Google Scholar 

  • Kim I, Cha J, Kim J, Jang S, Seo B, Cheong T, Lee DS, Choi YD, Park K (1992) Catalytic properties of the cloned amylase from Bacillus licheniformis. J Biol Chem 267:22108–22114

    Article  CAS  PubMed  Google Scholar 

  • Kim IC, Yoo SH, Lee SJ, Oh BH, Kim JW, Park KH (1994) Synthesis of branched oligosaccharides from starch by two amylases cloned from Bacillus licheniformis. Biosci Biotechnol Biochem 58:416–418

    Article  CAS  Google Scholar 

  • Kim T, Shin J, Oh J, Kim M, Lee S, Ryu S, Kwon K, Kim J, Choi E, Robyt JF, Park K (1998) Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 and characterization of enzymatic properties. Arch Biochem Biophys 353:221–227

    Article  CAS  PubMed  Google Scholar 

  • Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microbiol 65:1644–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TJ, Nguyen VD, Lee HS, Kim MJ, Cho HY, Kim YW, Moon TW, Park CS, Kim JW, Oh BH, Lee SB, Svensson B, Park KH (2001) Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the N-terminal domain and by a salt-induced shift of the monomer/dimer equilibrium. Biochem 40:14182–14190

    Article  CAS  Google Scholar 

  • Kim D, Cha C, Oh W, Yoon Y, Kim J (2004) Expression of the promoter for the maltogenic amylase gene in Bacillus subtilis 168. J Microbiol 42:319–327

    CAS  PubMed  Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    Article  CAS  PubMed  Google Scholar 

  • Kuriki T, Imanaka T (1989) Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J Gen Microbiol 135:1521–1528

    CAS  PubMed  Google Scholar 

  • Kuriki T, Imanaka T (1999) The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87:557–565

    Article  CAS  PubMed  Google Scholar 

  • Kuriki T, Kaneko H, Yanase M, Takata H, Shimada J, Handa S, Takada T, Umeyama H, Okada S (1996) Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J Biol Chem 271:17321–17329

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Yoo SH, Kim MJ, Kim JW, Seok HM, Park KH (1995) Production and characterization of branched oligosaccharides from liquefied starch by the action of Bacillus licheniformis amylase. Starch 47:127–134

    Article  CAS  Google Scholar 

  • Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park CS, Lee HS, Oh BH, Park KH (2002a) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277:21891–21897

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Lee YH, Kim YW, Kim TJ, Park CS, Kim JW, Moon TW, Park KH (2002b) A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and α-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem Biophysic Res Com 295:818–825

    Article  CAS  Google Scholar 

  • Li D, Park S, Shim J, Lee H, Tang S, Park C, Park K (2004) In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbo Res 339:2789–2797

    Article  CAS  Google Scholar 

  • Li X, Li D, Yin Y, Park K (2010) Characterization of a recombinant amylolytic enzyme of hyperthermophilic archaeon Thermofilum pendens with extremely thermostable maltogenic amylase activity. Appl Microbiol Biotechnol 85:1821–1830

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Min B, Yoon S, Kim J, Lee Y, Kim Y, Park K (1998) Cloning of novel maltooligosaccharide producing amylases as antistaling agents for bread. J Agri Food Chem 46:779–782

    Article  CAS  Google Scholar 

  • Ming H, Chang JC, Chen J (1993) Cloning and nucleotide sequence of an extracellular α-amylase gene from Aeromonas hydrophila MCC-1. J Gen Microbiol 139:3215–3223

    Article  Google Scholar 

  • Nair SU, Singhal RS, Kamat MY (2007) Induction of pullulanase production in Bacillus cereus FDTA-13. Bioresour Technol 98:856–859

    Article  CAS  PubMed  Google Scholar 

  • Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, Park C (2005) Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol Lett 252:175–181

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim Biophys Acta 1478:165–185

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Lee HS, Kim TJ, Cheong KA, Nguyen VD, Min MJ, Cho HY, Kim YW, Park CS, Oh BH, Kim JW (2002) N- and C-terminal region mediated oligomerization of the cyclodextrin-/pullulan degrading enzymes. Biologia Bratislava 57(Suppl):87–92

    CAS  Google Scholar 

  • Rowan NJ, Anderson JG (1997) Maltodextrin stimulates growth of Bacillus cereus and synthesis of diarrheal enterotoxin in infant milk formulae. Appl Environ Microbiol 63:1182–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönert S, Seitz S, Krafft H, Feuerbaum EA, Andernach I, Witz G, Dahl MK (2006) Maltose and maltodextrin utilization by Bacillus subtilis. J Bacteriol 188:3911–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JH, Park JH, Hong JS, Kim KW, Kim MJ, Auh JH, Kim YM, Park CS, Boos W, Kim JW, Park KH (2009) Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J Bacteriol 191:4835–4844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slock JA, Sthaly DP (1974) Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. J Bacteriol 120:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562

    Article  CAS  PubMed  Google Scholar 

  • Svensson B (1994) Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol 25:141–157

    Article  CAS  PubMed  Google Scholar 

  • Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T (1992) Action of neopullulanase. J Biol Chem 267:18447–18452

    Article  CAS  PubMed  Google Scholar 

  • Tonozuka T, Ohtsuka M, Mogi S, Sakai H, Ohta T, Sakano Y (1993) A Neopullulanase-type α-Amylase gene from Thermoactinomyces vulgaris R-47. Biosci Biotech Biochem 57:395–401

    Article  CAS  Google Scholar 

  • Vihinen M, Mäntsälä P (1989) Microbial amylolytic enzymes. Crit Rev Biochem Mol Biol 24:329–418

    Article  CAS  PubMed  Google Scholar 

  • Yebra MJ, Arroyo J, Sanz P, Prieto JA (1997) Characterization of novel neopullulanase from Bacillus polymyxa. Appl Biochem Biotech 68:113–120

    Article  CAS  Google Scholar 

  • Yoshida A, Iwasaki Y, Akiba T, Horikoshi K (1991) Purification and properties of cyclomaltodextrinase from alkalophilic Bacillus sp. J Ferment Bioeng 71:226–229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. YB Ko for assistance in collecting reference materials.

Funding

This study was supported by the INU grant in the year of 2019.

Author information

Authors and Affiliations

Authors

Contributions

B-RP performed investigation, DM prepared the manuscript, and J-WK contributed to funding acquisition, supervision of investigation, and revision of the manuscript.

Corresponding author

Correspondence to Jung-Wan Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval

Not applicable.

Consent to participate

All authors consented to participate investigation and publication.

Consent to publish

All authors consented to publish the results.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 616 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, BR., MubarakAli, D. & Kim, JW. Identification of a novel cyclomaltodextrinase annotated as a neopullulanase in the genome of Bacillus cereus. Arch Microbiol 205, 86 (2023). https://doi.org/10.1007/s00203-022-03390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03390-y

Keywords

Navigation