Skip to main content
Log in

A review on bacterial and archaeal thermostable sulfur oxidoreductases (SORS)-an insight into the biochemical, molecular and in-silico structural comparative analysis of a neglected thermostable enzyme of industrial significance

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Diverse thermophilic microorganisms with the potential to withstand extreme physiological conditions have long been investigated and explored for human commercial benefit. Thermozymes with distinct functional and structural properties isolated from these thermophiles are known to have high thermostability without significant loss of specific enzyme activity. Thermophiles isolated and characterised from the thermophilic ecological niche of India are well documented. There is a plethora of work in the literature emphasising its industrial significance. However, in-depth knowledge of the thermophilic oxidoreductase group of enzymes (Oxizymes) is restricted. Sulfur Oxygenase Reductases or Sulfur Oxygen-Reductases (SORs) are a group of thermophilic oxizymes reported predominantly from thermophilic and mesophilic archaea and bacteria, which catalyse oxygen-dependent disproportionation reactions of elemental sulfur, producing sulfite, thiosulfate, and sulphide. There have been few reports on isolated and characterised SORs from the Indian geothermal niche. The review article will highlight the SORs reported till date with a concise overview of different archaeal and bacterial species producing the enzymes. Based on the literature available till date, characteristics including physico-chemical properties, amino acid sequence homology, conserved motifs and their 3D structure comparison have been discussed. In-silico sequence and structure level preliminary comparative analysis of various SORs has also been discussed. However, a few SORs whose structural information is not reported in the protein data bank have been modelled to enrich our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Funding

This mini-review received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

"Authors (1) and (4) contributed the majority part for the publication of this manuscript by doing the literature review, conceptualizing the idea, the data analysis and writing the manuscript. Author (2) and (3) performed the in-silico data analysis and its interpretations. All authors reviewed the manuscript."

Corresponding author

Correspondence to Mitun Chakraborty.

Ethics declarations

Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this review article.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, N., Sinha, S., Shivani et al. A review on bacterial and archaeal thermostable sulfur oxidoreductases (SORS)-an insight into the biochemical, molecular and in-silico structural comparative analysis of a neglected thermostable enzyme of industrial significance. Arch Microbiol 204, 655 (2022). https://doi.org/10.1007/s00203-022-03256-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03256-3

Keywords

Navigation