Skip to main content
Log in

Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S rRNA amplicon sequencing

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In addition to a wide variety of anaerobic and facultative anaerobic bacteria, camel rumen also harbors a diverse of eukaryotic organisms. In the present study, the eukaryotic communities of camel rumen were characterized using 18S rRNA amplicon sequencing. Metagenomic DNA was isolated from rumen samples of fourteen adult Bikaneri and Kachchhi breeds of camel fed different diets containing Jowar, Bajra, Maize, and Guar. Illumina sequencing generated 27,161,904 number of reads corresponding to 1543 total operational taxonomic units (OTUs). Taxonomic classification of community metagenome sequences from all the samples revealed the presence of 92 genera belonging to 16 different divisions, out of which Ciliophora (73%), Fungi (13%) and Streptophyta (9%) were found to be the most dominant. Notably, the abundance of Ciliophora was significantly higher in the case of Guar feed, while Fungi was significantly higher in the case of Maize feed, indicating the influence of cellulose and hemicellulose content of feedstuff on the composition of eukaryotes. The results suggest that the camel rumen eukaryotes are highly dynamic and depend on the type of diet given to the animal. Pearson’s correlation analysis suggested the ciliate protozoa and fungi were negatively correlated with each other. To the best of our knowledge, this is first systematic study to characterize camel rumen eukaryotes, which has provided newer information regarding eukaryotic diversity patterns amongst camel fed on different diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The sequences for this study have been deposited in the NCBI-SRA under the BioProject PRJNA603266.

References

  • Akin DE, Borneman WS (1990) Role of rumen fungi in fiber degradation. J Dairy Sci 73(10):3023–3032. https://doi.org/10.3168/jds.S0022-0302(90)78989-8

    Article  CAS  PubMed  Google Scholar 

  • Albertin W, Setati ME, Miot-Sertier C, Mostert TT, Colonna-Ceccaldi B, Coulon J, Girard P, Moine V, Pillet M, Salin F, Bely M, Divol B, Masneuf-Pomarede I (2016) Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Front Microbiol. https://doi.org/10.3389/fmicb.2015.01569

    Article  PubMed  PubMed Central  Google Scholar 

  • Alipour D (2012) Ruminal ciliated protozoa in Baloochi and Sindhi Camel breeds. J Vet Res 67(3):257–263

    Google Scholar 

  • Almeida PNMd, Duarte ER, Abrão FO, Freitas CES, Geraseev LC, Rosa CA (2012) Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage. R Bras Zootec 41(11):2336–2342

    Article  Google Scholar 

  • Ando S, Nishiguchi Y, Hayasaka K, Iefuji H, Takahashi J (2006) Effects of Candida utilis Treatment on the nutrient value of rice bran and the effect of Candida utilis on the degradation of forages in vitro. Asian Australas J Anim Sci 19(6):806–810. https://doi.org/10.5713/ajas.2006.806

    Article  Google Scholar 

  • Barbosa Junior AM, Santos BFdO, Carvalho EdO, Mélo DLFMd, Trindade RdC, Stoianoff MAdR (2013) Biological activity of Cryptococcus neoformans and Cryptococcus gattii from clinical and environmental isolates. J Bras Patol Med Lab 49(3):160–168

    Article  Google Scholar 

  • Belzecki G, Miltko R, Kwiatkowska E, Michalowski T (2013) The ability of rumen ciliates, Eudiplodinium maggii, Diploplastron affine, and Entodinium caudatum, to use the murein saccharides. Folia Microbiol 58(6):463–468. https://doi.org/10.1007/s12223-013-0231-0

    Article  CAS  Google Scholar 

  • Bonhomme A (1990) Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim Feed Sci Tech 30(3–4):203–266

    Article  CAS  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman G (1989) Protozoal-bacterial interaction in the rumen. The roles of protozoa and fungi in ruminant digestion. Penambul Books, Armidale, pp 13–27

    Google Scholar 

  • Das B, Arora S, Luthra Y (1975) Variability in structural carbohydrates and in vitro digestibility of forages. 3. Guar (Cyamopsis tetragonoloba). J Dairy Sci 58(9):1347–1351

    Article  CAS  PubMed  Google Scholar 

  • Dehority BA (2017) Laboratory manual for classification and morphology of rumen ciliate protozoa. CRC Press, US

    Google Scholar 

  • Dunthorn M, Klier J, Bunge J, Stoeck T (2012) Comparing the hyper-variable V4 and v9 regions of the small subunit rDNA for assessment of ciliate environmental diversity. J Eukaryot Microbiol 59(2):185–187. https://doi.org/10.1111/j.1550-7408.2011.00602.x

    Article  CAS  PubMed  Google Scholar 

  • Ellis JE, Williams A, Lloyd D (1989) Oxygen consumption by ruminal microorganisms: protozoal and bacterial contributions. Appl Environ Microbiol 55(10):2583–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugène M, Archimede H, Sauvant D (2004) Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest Prod Sci 85(1):81–97

    Article  Google Scholar 

  • Gow NA, Yadav B (2017) Microbe profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiology 163(8):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Gürelli G, Canbulat S, Aldayarov N, Dehority BA (2016) Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw028

    Article  PubMed  Google Scholar 

  • Hadziavdic K, Lekang K, Lanzen A, Jonassen I, Thompson EM, Troedsson C (2014) Characterisation of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9(2):e87624–e87624. https://doi.org/10.1371/journal.pone.0087624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harinarayana G, Melkania N, Reddy B, Gupta S, Rai K, Kumar PS (2005) Forage potential of sorghum and pearl millet. Biofortified Crops for Human Nutrition. West Lafayette, IN, pp 292–321

    Google Scholar 

  • Ho YW, Barr DJS (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87(5):655–677. https://doi.org/10.2307/3760810

    Article  Google Scholar 

  • Hubenova Y, Mitov M (2010) Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry 78(1):57–61. https://doi.org/10.1016/j.bioelechem.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  • Hugerth LW, Muller EEL, Hu YOO, Lebrun LAM, Roume H, Lundin D, Wilmes P, Andersson AF (2014) Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS ONE 9(4):e95567–e95567. https://doi.org/10.1371/journal.pone.0095567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishaq SL, AlZahal O, Walker N, McBride B (2017) An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or grain-induced sub-acute ruminal acidosis conditions, with or without active dry yeast supplementation. Front Microbiol 8:1943. https://doi.org/10.3389/fmicb.2017.01943

    Article  PubMed  PubMed Central  Google Scholar 

  • Jančič S, Nguyen HD, Frisvad JC, Zalar P, Schroers H-J, Seifert KA, Gunde-Cimerman N (2015) A taxonomic revision of the Wallemia sebi species complex. PLoS ONE 10(5):e0125933

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelmann S, Janssen PH (2011) Characterisation of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol Ecol 75(3):468–481

    Article  CAS  PubMed  Google Scholar 

  • Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 8(2):e47879–e47879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittelmann S, Devente SR, Kirk MR, Seedorf H, Dehority BA, Janssen PH (2015) Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Appl Environ Microbiol 81(7):2433–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Eadie JM, Hobson P, Mann S (1968) Relationship between bacteria and ciliate protozoa in the sheep rumen. Microbiology 51(2):267–288

    CAS  Google Scholar 

  • Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungusorpinomycesPC-2 and aspects of its applied use. Ann N Y Acad Sci 1125(1):308–321

    Article  CAS  PubMed  Google Scholar 

  • Mada PK, Jamil RT, Alam MU (2019) Cryptococcus (Cryptococcosis). StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • McAllister T, Bae H, Jones G, Cheng K-J (1994) Microbial attachment and feed digestion in the rumen. J Anim Sci 72(11):3004–3018

    Article  CAS  PubMed  Google Scholar 

  • Mehta SC, Mishra BP, Sahani MS (2006) Genetic differentiation of Indian camel (Camelus dromedarius) breeds using random oligonucleotide primers. Anim Genet Resour 39:77–88. https://doi.org/10.1017/S1014233900002157

    Article  Google Scholar 

  • Moreira N, Pina C, Mendes F, Couto JA, Hogg T, Vasconcelos I (2011) Volatile compounds contribution of Hanseniaspora guilliermondii and Hanseniaspora uvarum during red wine vinifications. Food Control 22(5):662–667. https://doi.org/10.1016/j.foodcont.2010.07.025

    Article  CAS  Google Scholar 

  • Netzel G, Tan ETT, Yin M, Giles C, Yong K, Al Jassim R, Fletcher M (2019) Bioaccumulation and distribution of indospicine and its foregut metabolites in camels fed indigofera spicata. Toxins 11(3):162. https://doi.org/10.3390/toxins11030169

    Article  CAS  Google Scholar 

  • Orpin C, Joblin K (1997) The rumen anaerobic fungi. The rumen microbial ecosystem. Springer, Dordrecht, pp 140–195

    Chapter  Google Scholar 

  • Oxford A (1958) Bloat in cattle: IX. Some observations on the culture of the cattle rumen ciliate Epidinium ecaudatum crawley occurring in quantity in cows fed on red clover (Trifolium pratense L.). New Zealand J Agric Res. 1(6):809–824

    Article  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi M, Wang P, O’Toole N, Barboza PS, Ungerfeld E, Leigh MB, Selinger LB, Butler G, Tsang A, McAllister TA (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen—a metatranscriptomic approach. PLoS ONE 6(5):e20521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabee AE, Forster RJ, Elekwachi CO, Kewan KZ, Sabra EA, Shawket SM, Mahrous HA, Khamiss OA (2019) Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels. J Basic Microbiol 59(1):101–110. https://doi.org/10.1002/jobm.201800323

    Article  CAS  PubMed  Google Scholar 

  • Refai M, Elhariri M, Alarousy R (2017) Cryptococcosis in Animals and Birds: A Review, vol 4

  • Rocha-Meneses L, Raud M, Orupõld K, Kikas T (2017) Second-generation bioethanol production: a review of strategies for waste valorisation. Agron Res 15(3):830–847

    Google Scholar 

  • Samsudin AA, Wright A-DG, Al Jassim R (2012) Investigation into the cellulolytic bacteria in the foregut of the Dromedary Camel (Camelus dromedarius). Appl Environ Microbiol 78(24):8836–8839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Selim HM, Imai S, Yamato O, Miyagawa E, Maede Y (1996) Ciliate protozoa in the forestomach of the dromedary camel, (Camelus dromedarius), in Egypt, with description of a new species. J Vet Med Sci 58(9):833–837

    Article  CAS  PubMed  Google Scholar 

  • Shin EC, Cho KM, Lim WJ, Hong SY, An CL, Kim EJ, Kim YK, Choi BR, An JM, Kang JM, Kim H, Yun HD (2004) Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J Appl Microbiol 97(2):378–383. https://doi.org/10.1111/j.1365-2672.2004.02304.x

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Pandya P, Tripathi A, Patel G, Parnerkar S, Kothari R, Joshi C (2013) Molecular diversity of protozoa in rumen of Indian buffalo (Bubalus bubalis). Agric Res 2(4):360–366

    Article  Google Scholar 

  • Sipiczki M, Tap RM (2016) Candida vulturna pro tempore sp. nov., a dimorphic yeast species related to the Candida haemulonis species complex isolated from flowers and clinical sample. Int J Syst Evol Microbiol 66(10):4009–4015. https://doi.org/10.1099/ijsem.0.001302

    Article  CAS  PubMed  Google Scholar 

  • Sirisan V, Pattarajinda V, Vichitphan K, Leesing R (2013) Isolation, identification and growth determination of lactic acid-utilising yeasts from the ruminal fluid of dairy cattle. Lett Appl Microbiol 57(2):102–107. https://doi.org/10.1111/lam.12078

    Article  CAS  PubMed  Google Scholar 

  • Small EB (1976) A proposed subphyletic division of the phylum Ciliophora Doflein, 1901. Trans Am Microsc Soc 95:739–751

    Article  Google Scholar 

  • Sylvester JT, Karnati SK, Yu Z, Morrison M, Firkins JL (2004) Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr 134(12):3378–3384

    Article  CAS  PubMed  Google Scholar 

  • Takizawa S, Baba Y, Tada C, Fukuda Y, Nakai Y (2019) Preservation of rumen fluid for the pretreatment of waste paper to improve methane production. Waste Manage 87:672–678

    Article  CAS  Google Scholar 

  • Veira DM (1986) The role of ciliate protozoa in nutrition of the ruminant. J Anim Sci 63(5):1547–1560

    Article  CAS  PubMed  Google Scholar 

  • Williams AG (1986) Rumen holotrich ciliate protozoa. Microbiol Rev 50(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams A, Coleman G (1997) The rumen protozoa. The rumen microbial ecosystem. Springer, Germany, pp 73–139

    Chapter  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India, New Delhi; Reference No.: BT/PR15586/AAQ/1/651/2015.

Author information

Authors and Affiliations

Authors

Contributions

HJP and CGJ conceptualised the experimental design, NVP performed the feeding experiment, SJJ and NAD performed sample collection. NJT and PM performed DNA isolation, sequencing, bioinformatics analysis, and initial manuscript writing; SJJ, PGK and NAD improved the manuscript.

Corresponding author

Correspondence to Subhash J. Jakhesara.

Ethics declarations

The experiment was performed under the approval of the institutional animal ethics committee of the National Research Center on Camel, Bikaner, Rajasthan.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Tulsani, N.J., Jakhesara, S.J. et al. Exploring the eukaryotic diversity in rumen of Indian camel (Camelus dromedarius) using 18S rRNA amplicon sequencing. Arch Microbiol 202, 1861–1872 (2020). https://doi.org/10.1007/s00203-020-01897-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01897-w

Keywords

Navigation