Skip to main content
Log in

Quebrachitol from Rhizophora mucronata inhibits biofilm formation and virulence production in Staphylococcus epidermidis by impairment of initial attachment and intercellular adhesion

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus epidermidis is well recognized nosocomial pathogen in clinical settings for their implants associated infections. Biofilm and virulence production executes a S. epidermidis pathogenesis against host. Hence, interfering of biofilm formation has become an auspicious to control the pathogenesis of S. epidermidis. The present study evaluates antibiofilm potential of Rhizophora mucronata against S. epidermidis biofilms. Rhizophora mucronata leaves extract significantly inhibited the biofilm formation and quebrachitol was identified as an active compound responsible for the biofilm inhibition. Quebrachitol significantly inhibited biofilm formation at concentration dependent manner without exhibit non-bactericidal property. And, quebrachitol reduced the biofilm building components such as exopolysaccharides, lipase and proteins production. Confocal laser scanning microscopic studies obtained quebrachitol surface independent biofilm efficacy against S. epidermidis. Notably, quebrachitol significantly reduced S. epidermidis adherence on biotic (coated with type I collagen and fibrinogen) and abiotic (hydrophobic and hydrophilic) surfaces. Addition of quebrachitol inhibits autolysis mediated initial attachment and accumulation associated aggregation process. Moreover, quebrachitol significantly reduced the hydrolases virulence production which supports S. epidermidis invasion into the host. Furthermore, gene expression analysis revealed the ability of quebrachitol to downregulate the virulence genes expression which are mainly involved in biofilm formation and virulence production. The results obtained from the present study suggest that quebrachitol as an ideal candidate for the therapeutic action against S. epidermidis pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrecubieta C, Lee MH, Macey A, Foster TJ, Lowy FD (2007) SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem 282:18767–18776

    CAS  PubMed  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetl Ecol Manag 10:421–452

    CAS  Google Scholar 

  • Byreddy AR, Gupta A, Barrow CJ, Puri M (2016) A quick colorimetric method for total lipid quantification in microalgae. J Microbiol Methods 125:28–32

    CAS  PubMed  Google Scholar 

  • Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J (2005) Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol 156:506–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charville GW, Hetrick EM, Geer CB, Schoenfisch MH (2008) Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials 29:4039–4044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207

    CAS  PubMed  Google Scholar 

  • Chung MS, Kim NC, Long L, Shamon L, Ahmad WY, Sagrero-Nieves L, Kardono LB, Kennelly EJ, Pezzuto JM, Soejarto DD, Kinghorn AD (1997) Dereplication of saccharide and polyol constituents of candidate sweet-tasting plants: isolation of the sesquiterpene glycoside mukurozioside IIb as a sweet principle of Sapindus rarak. J Plant Chem Biochem Technol 8:49–54

    CAS  Google Scholar 

  • Clarke SR, Foster SJ (2006) Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 51:187–224

    CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (2006) Methods for dilution anti-microbial susceptibility tests for bacteria that grow aerobically; approved standard. Clinical and Laboratory Standards Institute document, Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Cue D, Junecko JM, Lei MG, Blevins JS, Smeltzer MS, Lee CY (2015) SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. PLoS ONE 10:e0123027

    PubMed  PubMed Central  Google Scholar 

  • Dai L, Yang L, Parsons C, Findlay VJ, Molin S, Qin Z (2012) Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and “self-renewal” through downregulation of agr. BMC Microbiol 12:102

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho MG, Carvalho Cranchi D, Kingston DG, Werle AA (2001) Proposed active constituents of Dipladenia martiana. Phytother Res 15:715–717

    PubMed  Google Scholar 

  • Díaz M, González A, Castro-Gamboa I, Gonzalez D, Rossini C (2008) First record of l-quebrachitol in Allophylus edulis (Sapindaceae). Carbohydr Res 343:2699–2700

    PubMed  Google Scholar 

  • Fey PD, Olson ME (2010) Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5:917–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gotman I (1997) Characteristics of metals used in implants. J Endourol 11:383–389

    CAS  PubMed  Google Scholar 

  • Greenberg M, Kuo D, Jankowsky E, Long L, Hager C, Bandi K, Ma D, Manoharan D, Shoham Y, Harte W, Ghannoum MA (2018) Small-molecule AgrA inhibitors F12 and F19 act as antivirulence agents against Gram-positive pathogens. Sci Rep 8:14578

    PubMed  PubMed Central  Google Scholar 

  • Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024

    CAS  PubMed  Google Scholar 

  • Karuppiah V, Thiruganasambandam R (2017) Antibiofilm and quorum sensing inhibitory potential of Excoecaria agallocha against Pseudomonas aeruginosa. Int J Sci Invent Today 6:758–771

    Google Scholar 

  • Karuppiah V, Thiruganasambandam R (2018) Anti-biofilm and quorum sensing inhibitory potential of Acanthus ilicifolius against uropathogens. LS: IJLS 7:65–74

    Google Scholar 

  • Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K, Ziebuhr W (2004) The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72:1210–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mack D, Davies AP, Harris LG, Jeeves R, Pascoe B, Knobloch JKM, Rohde H, Wilkinson TS (2013) Staphylococcus epidermidis in biomaterial-associated infections. In: Moriarty F, Zaat SAJ (eds) Biomaterials associated infection: immunological aspects and antimicrobial strategies. Springer, New York, pp 25–56

    Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    CAS  PubMed  Google Scholar 

  • McCourt J, O’Halloran DP, McCarthy H, O’Gara JP, Geoghegan JA (2014) Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 353:157–164

    CAS  PubMed  Google Scholar 

  • Michelim L, Lahude M, Araújo PR, Giovanaz DS, Müller G, Delamare AP, Costa SO, Echeverrigaray S (2005) Pathogenic factors and antimicrobial resistance of Staphylococcus epidermidis associated with nosocomial infections occurring in intensive care units. Braz J Microbiol 36:17–23

    Google Scholar 

  • Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012) 2, 5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:679–686

    CAS  PubMed  Google Scholar 

  • Nabeelah Bibi S, Fawzi MM, Gokhan Z, Rajesh J, Nadeem N, Kannan RRR, Albuquerque RDDG, Pandian SK (2019) Ethnopharmacology, phytochemistry, and global distribution of mangroves—a comprehensive review. Mar Drugs 17:231

    PubMed Central  Google Scholar 

  • Oh ET, So JS (2003) A rapid method for RNA preparation from Gram-positive bacteria. J Microbiol Methods 52:395–398

    CAS  PubMed  Google Scholar 

  • O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850

    PubMed  PubMed Central  Google Scholar 

  • Otto M (2009) Staphylococcus epidermidis the ‘accidental’ pathogen. Nat Rev Microbiol 7:555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otto M (2012) Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol 34:201–214

    PubMed  Google Scholar 

  • Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188

    CAS  PubMed  Google Scholar 

  • Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092

    CAS  PubMed  Google Scholar 

  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8113–8118

    CAS  PubMed  Google Scholar 

  • Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895

    CAS  PubMed  Google Scholar 

  • Rohde H, Frankenberger S, Zähringer U, Mack D (2010) Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 89:103–111

    CAS  PubMed  Google Scholar 

  • Schaeffer CR, Woods KM, Longo GM, Kiedrowski MR, Paharik AE, Büttner H, Christner M, Boissy RJ, Horswill AR, Rohde H, Fey PD (2015) Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun 83:214–226

    PubMed  Google Scholar 

  • Sethupathy S, Vigneshwari L, Valliammai A, Balamurugan K, Pandian SK (2017) l-Ascorbyl 2, 6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv 7:23392–23406

    Google Scholar 

  • Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV (2017) In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol 101:3349–3359

    CAS  PubMed  Google Scholar 

  • Sorroche FG, Spesia MB, Zorreguieta Á, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, Ehrlich GD, Kathju S (2008) Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty: a case report. J Bone Jt Surg 90:1751

    Google Scholar 

  • Subramenium GA, Vijayakumar K, Pandian SK (2015) Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J Med Microbiol 64:879–890

    CAS  PubMed  Google Scholar 

  • Vijayakumar K, Ramanathan T (2018) Antiquorum sensing and biofilm potential of 5-Hydroxymethylfurfural against Gram positive pathogens. Microb Pathog 125:48–50

    CAS  PubMed  Google Scholar 

  • Vijayakumar K, Ramanathan T (2020) Musa acuminata and its bioactive metabolite 5-hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. J Ethnopharmacol 246:112242

    CAS  PubMed  Google Scholar 

  • Viszwapriya D, Subramenium GA, Radhika S, Pandian SK (2017) Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes. Antonie Van Leeuwenhoek 110:153–165

    CAS  PubMed  Google Scholar 

  • von Eiff C, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase negative staphylococci. Lancet Infect Dis 2:677–685

    Google Scholar 

  • Vuong C, Götz F, Otto M (2000) Construction and characterization of anagr deletion mutant of Staphylococcus epidermidis. Infect Immun 68:1048–1053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Zhang S, Chang Z, Kong DX, Zuo Z (2017) Quebrachitol: global status and basic research. Nat Prod Bioprospect 7:113–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang H, Cao F, Ming D, Zheng Y, Dong X, Zhong X, Mu D, Li B, Zhong L, Cao J, Wang L (2017) Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development. Appl Microbiol Biotechnol 101:6671–6681

    CAS  PubMed  Google Scholar 

  • Yao Y, Vuong C, Kocianova S, Villaruz AE, Lai Y, Sturdevant DE, Otto M (2006) Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis 193:841–848

    PubMed  Google Scholar 

  • Ziebuhr W, Hennig S, Eckart M, Kränzler H, Batzilla C, Kozitskaya S (2006) Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 1:14–20

    Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Dr. G. Ashwinkumar Subramenium and Dr. S. Muhil vannan Seralathan, PAR Life Sciences and Research Pvt Ltd. for support in discussing and fulfilling the work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayakumar Karuppiah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and animals

This study does not contain any experiments with human participants or animals performed by any of the authors.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppiah, V., Thirunanasambandham, R. Quebrachitol from Rhizophora mucronata inhibits biofilm formation and virulence production in Staphylococcus epidermidis by impairment of initial attachment and intercellular adhesion. Arch Microbiol 202, 1327–1340 (2020). https://doi.org/10.1007/s00203-020-01844-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01844-9

Keywords

Navigation