Skip to main content
Log in

Paraburkholderia panacisoli sp. nov., a potentially antagonistic bacterium against the root rot fungal pathogen Cylindrocarpon destructans, isolated from ginseng cultivation soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A new bacterium, designated DCY113T, was isolated from ginseng cultivation soil in Gochang-gun, South Korea, and its taxonomic position identified by the polyphasic approach. 16S rRNA gene sequence analysis determined that this isolate belongs to the genus Paraburkholderia, and was closest to P. dipogonis DL7T (98.6%), P. phytofirmans PsJNT (98.5%), P. kirstenboschensis Kb15T (98.4%) and P. aromaticivorans BNT (98.1%). Strain DCY113T is Gram-reaction negative, strictly aerobic, rod-shaped, non-motile, and catalase and oxidase positive. The predominant isoprenoid quinone of DCY113T was ubiquinone Q-8. The major cellular fatty acids were C16:0, cyclo-C17:0 and the Summed feature 8 (C18:1ω7c and/or C18:1ω6c). The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and an unknown amino lipid (AL1). The G+C content of the genomic DNA was 62.2 mol%. Average nucleotide identity (ANI) between strain DCY113T and the related Paraburkholderia type strains were below the threshold value for species delineation. This low DNA relatedness in combination with phylogenetic and phenotypic tests indicates that strain DCY113T cannot be assigned to any recognized species. Strain DCY113T was also found to have antifungal activity against the pathogenic fungi Cylindrocarpon destructans. In conclusion, this study found DCY113T to be a novel species within the genus Paraburkholderia, for which the name P. panacisoli is proposed. The type strain is DCY113T (= KCTC 52951T = JCM 32098T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bauer A, Kirby W, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  • Bournaud C, Moulin L, Cnockaert M, de Faria S, Prin Y, Severac D, Vandamme P (2017) Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 67:432–440

    Article  CAS  Google Scholar 

  • Choi GM, Im WT (2017) Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 68:310–316

    Article  Google Scholar 

  • Farh ME-A, Kim YJ, Van An H, Sukweenadhi J, Singh P, Huq MA, Yang DC (2015) Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch Microbiol 197:439–447

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gao ZQ, Zhao DY, Xu L, Zhao RT, Chen M, Zhang CZ (2016) Paraburkholderia caffeinitolerans sp. nov., a caffeine degrading species isolated from a tea plantation soil sample. Anto Van Leeu 109:1475–1482

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han JH, Park GC, Kim KS (2017) Antagonistic Evaluation of Chromobacterium sp. JH7 for biological control of ginseng root rot caused by Cylindrocarpon destructans. Mycobiology 45:370–378

    Article  Google Scholar 

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  CAS  Google Scholar 

  • Kang JP, Nguyen NL, Kim YJ, Hoang VA, Bae KS, Yang DC (2015) Paralcaligenes ginsengisoli sp. nov., isolated from ginseng cultivated soil. Anto Van Lee 108:619–626

    Article  CAS  Google Scholar 

  • Kim OS et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, UK, pp 115–175

    Google Scholar 

  • Lee YH, Jeon CO (2018) Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 68:1251–1257

    Article  Google Scholar 

  • Levine M, Epstein S, Vaughn R (1934) Differential reactions in the colon group of bacteria. Am J Public Health Nations Health 24:505–510

    Article  CAS  Google Scholar 

  • Li Y, Ying Y, Ding W (2014) Dynamics of Panax ginseng Rhizospheric soil microbial community and their metabolic function. Evid Based Complement Alternat Med. https://doi.org/10.1155/2014/160373

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv YY, Chen MH, Xia F, Wang J, Qiu LH (2016) Paraburkholderia pallidirosea sp. nov., isolated from a monsoon evergreen broad-leaved forest soil. Int J Syst Evol Microbiol 66:4537–4542

    Article  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167

    CAS  Google Scholar 

  • Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Rahman M, Punja ZK (2005) Factors influencing development of root rot on ginseng caused by Cylindrocarpon destructans. Phytopathology 95:1381–1390

    Article  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark, DE

    Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  Google Scholar 

  • Sessitsch A et al (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    Article  CAS  Google Scholar 

  • Sheu SY et al (2015) Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. Int J Syst Evol Microbiol 65:4716–4723

    Article  CAS  Google Scholar 

  • Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY, Palmer M, Mthombeni LS, KaraboSereme T, Stephanus NV (2015) Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 38:545–554

    Article  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Wayne LG et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Weber CF, King GM (2017) Volcanic soils as sources of novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a member of the Burkholderia cepacia complex. Front Microbiol 8:207

Download references

Acknowledgements

This work was supported by the (2011) Grant from the Korean Society of Ginseng.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Pyo Kang or Deok-Chun Yang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The NCBI GenBank accession numbers for the 16S rRNA gene sequence and the draft genome of strain DCY113T are KY694398 and VTUZ00000000, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (FASTA 1 kb)

Supplementary file 2 (DOCX 610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Chokkalingam, M., Kang, JP. et al. Paraburkholderia panacisoli sp. nov., a potentially antagonistic bacterium against the root rot fungal pathogen Cylindrocarpon destructans, isolated from ginseng cultivation soil. Arch Microbiol 202, 1341–1347 (2020). https://doi.org/10.1007/s00203-020-01840-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01840-z

Keywords

Navigation