Skip to main content
Log in

Hydrocarbon degradation potential and competitive persistence of hydrocarbonoclastic bacterium Acinetobacter pittii strain ABC

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter pittii strain ABC was isolated from oily sludge sediments and characterized with regard to utilization/degradation of hydrocarbons and competitive persistence in hydrocarbon-amended media. The isolate grew in both aliphatic- and aromatic hydrocarbon-amended Bushnell–Haas medium (BHM). When incubated in 1% (v/v) Assam crude oil-amended BHM for 5 and 10 days, this strain was able to degrade 88% and 99.8% of the n-hexane extractable crude oil components, respectively. The isolate showed appreciable emulsification index (E24 65.26 ± 1.2%), hydrophobicity (60.88 ± 3.5%) and produced lipopeptide biosurfactant (0.57 g L−1). The isolate was able to tolerate heavy metal salts at concentrations reported in crude oil-polluted sediments from Assam. A 16S rDNA DGGE-based screening showed the persistence of A. pittii strain ABC in hydrocarbon-amended microcosms co-inoculated with other hydrocarbonoclastic bacterial strains (Pseudomonas aeruginosa AKS1, Bacillus sp. AKS2, Arthrobacter sp. BC1, and Novosphingobium panipatense P5:ABC), each isolated from the same oily sludge sediment. These findings indicate A. pittii strain ABC as a potential agent for the bioremediation of crude oil-polluted environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L (2014) Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ Sci Process Impacts 16(4):897–903

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Seech AG, Lee H, Trevors JT (1990) Identification and characterization of a soil bacterium with extracellular emulsifying activity. J Environ Sci Health A 25(7):753–764

    Google Scholar 

  • Chettri B, Mukherjee A, Langpoklakpam JS, Chattopadhyay D, Singh AK (2016) Kinetics of nutrient enhanced crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2 isolated from Guwahati refinery, India. Environ Pollut 216:548–558

    Article  CAS  PubMed  Google Scholar 

  • Dal S, Steiner I, Gerischer U (2002) Multiple operons connected with catabolism of aromatic compounds in Acinetobacter sp. strain ADP1 are under carbon catabolite repression. J Mol Microbiol Biotechnol 4:389–404

    CAS  PubMed  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98(7):1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Das D, Baruah R, Sarma RA, Singh AK, Deka Boruah HP, Kalita J, Bora TC (2015) Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics 105(3):182–190

    Article  CAS  PubMed  Google Scholar 

  • Dikshit KR, Dikshit JK (2014) Industries and associated economic activities. In: North-East India: land, people and economy. Advances in Asian Human-Environmental Research, Springer Dordrecht

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Al-mamun A, Hossain F, Quraish SB, Naher K, Khan R, Das S, Tamim U, Hossain SM, Nahid F (2017) Contamination and ecological risk assessment of trace elements in sediments of the rivers of Sundarban mangrove forest, Bangladesh. Mar Pollut Bull 124:356–366

    Article  CAS  PubMed  Google Scholar 

  • Jadeja NB, Moharir P, Kapley A (2019) Genome sequencing and analysis of strains Bacillus sp. AKBS9 and Acinetobacter sp. AKBS16 for biosurfactant production and bioremediation. Appl Biochem Biotechnol 187(2):518–530

    Article  CAS  PubMed  Google Scholar 

  • Kingston PF (2002) Long-term environmental impact of oil spills. Spill Sci Technol Bull 7(1–2):53–61

    Article  CAS  Google Scholar 

  • Kriipsalu M, Marques M, Maastik A (2008) Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. J Mater Cycles Waste Manage 10(1):79–86

    Article  CAS  Google Scholar 

  • Lal B, Khanna S (1996) Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81(4):355–362

    CAS  PubMed  Google Scholar 

  • Long H, Wang Y, Chang S, Liu G, Chen T, Huo G, Zhang W, Wu X, Tai X, Sun L, Zhang B (2017) Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau. Environ Monit Assess 189(3):116

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli R, Pessione E, Giuffrida MG, Fattori P, Barello C, Giunta C, Lindley ND (2007) Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures. Arch Microbiol 188(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Mindlin S, Petrenko A, Kurakov A, Beletsky A, Mardanov A, Petrova M (2016) Resistance of permafrost and modern Acinetobacter lwoffii strains to heavy metals and arsenic revealed by genome analysis. Biomed Res Int 2016:3970831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr Microbiol 43(5):328–335

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Office of the Federal Registration (OFR) (1982) Appendix A: priority pollutants. Fed Reg 47:52309

    Google Scholar 

  • Peterson CH (2001) The “Exxon Valdez” oil spill in Alaska: acute, indirect and chronic effects on the ecosystem. Adv Mar Biol 39:1–103

    Article  Google Scholar 

  • Ratajczak A, Geissdorfer W, Hillen W (1998) Expression of alkane hydroxylase from Acinetobacter sp. strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. J Bacteriol 180(22):5822–5827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Roy AS, Baruah R, Borah M, Singh AK, Boruah HPD, Saikia N, Deka M, Dutta N, Bora TC (2014) Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeter Biodegr 94:79–89

    Article  CAS  Google Scholar 

  • Sakai Y, Maeng JH, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13–C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58(11):2128–2130

    Article  CAS  Google Scholar 

  • Sarkar J, Kazy SK, Gupta A, Dutta A, Mohapatra B, Roy A, Bera P, Mitra A, Sar P (2016) Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Front Microbiol 7:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, Earl K, Adams PN, Zimmerman AR (2012) Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. PNAS 109(28):11234–11239

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Chettri B, Ghosh A, Chikara SK, Tripathi T (2017) Draft genome sequence of the hydrocarbon-degrading bacterium Acinetobacter pittii strain ABC isolated from Noonmati Refinery, Assam. India. Genome Announc 5(44):e01264-17

    Article  PubMed  Google Scholar 

  • Teal JM (1984) Oil spill studies: a review of ecological effects. Environ Manag 8(1):27–44

    Article  Google Scholar 

  • Thangaraj K, Kapley A, Purohit HJ (2008) Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds. Bioresour Technol 99(7):2488–2494

    Article  CAS  PubMed  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73(10):3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer-Verlag, Berlin, New York

    Book  Google Scholar 

  • Wolfe DA, Hameedi MJ, Galt JA, Watabayashi G, Short J, O’Claire C, Rice S, Michel J, Payne JR, Braddock J, Hanna S, Sale D (1994) The fate of the oil spilled from the Exxon Valdez. Environ Sci Technol 28(13):560–568

    Article  Google Scholar 

  • Yuan H, Yao J, Masakorala K, Wang F, Cai M, Yu C (2014) Isolation and characterization of a newly isolated pyrene-degrading Acinetobacter strain USTB-X. Environ Sci Pollut Res Int 21(4):2724–2732

    Article  CAS  PubMed  Google Scholar 

  • Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146(1–2):30–38

    Article  CAS  PubMed  Google Scholar 

  • Zibilski LM (1994) Carbon mineralization. In: Weaver RW, Angle S, Bottomley P (eds) Methods of soil analysis. Part 2, microbiological and biochemical properties. Soil Science Society of America, Madison

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from DBT, Govt. of India (BT/306/NE/TBP/2012). Fellowship grant from Department of Science and Technology, Govt. of India to BC (IF10272) is gratefully acknowledged. AM was supported by the CSIR/UGC-NET Fellowship from the University Grants Commission, Govt. of India (201112-NETJRF-10217-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chettri, B., Singha, N.A., Mukherjee, A. et al. Hydrocarbon degradation potential and competitive persistence of hydrocarbonoclastic bacterium Acinetobacter pittii strain ABC. Arch Microbiol 201, 1129–1140 (2019). https://doi.org/10.1007/s00203-019-01687-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01687-z

Keywords

Navigation