Skip to main content
Log in

Synergistic deletion of RGS1 and COS1 may reduce the pathogenicity of Magnaporthe oryzae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rice blast, caused by Magnaporthe oryzae, is a serious threat to global rice production. In recent years, many pathogenicity genes of M. oryzae have been identified, although most of their functions remain unknown. In this study, we report the synergistic deletion of RGS1 and COS1 that may reduce the pathogenicity of M. oryzae. The investigation involved comparing ΔMorgs1, ΔMocos1, and ΔMorgs1Mocos1 mutants. The ΔMorgs1Mocos1 mutant showed a weak reduction in vegetative growth, and the colonies displayed fewer and smoother aerial hyphae. The ΔMorgs1Mocos1 mutant exhibited delayed appressorium-like structure formation and ‘low pathogenicity’ on detached rice seedling leaves when compared with ΔMocos1. Moreover, the melanin content of the single and double mutants was remarkably lower than that of the WT type. Thus, our results indicate that the synergy between RGS1 and COS1 may be crucial in the pathogenicity of M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CM:

Complete medium

DHN:

1,8-Dihydroxynaphthalene

OMA:

Oatmeal agar

qRT-PCR:

Quantitative reverse-transcription-polymerase chain reaction

WT:

Wild type

References

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    Article  CAS  Google Scholar 

  • Chumley FG, Valent B (1990) Genetic analysis of melanin-deficient nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143

    Article  CAS  Google Scholar 

  • Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Klosterman SJ, Wang C, Subbarao KV, Xu X, Shang W, Hu X (2017) Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genet Biol 98:1–11

    Article  CAS  PubMed  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    Article  CAS  PubMed  Google Scholar 

  • Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Ahn IP, Rho HS, Lee YH (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57:1224–1237

    Article  CAS  PubMed  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  PubMed  Google Scholar 

  • Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Han XX, Liu ZQ, He C (2013) The function and properties of the transcriptional regulator COS1 in Magnaporthe oryzae. Fungal Biol 117:239–249

    Article  CAS  PubMed  Google Scholar 

  • Liu KJ, Suresh A, Willard FS et al (2014) Rgs1 regulates multiple Gα subunits in Magnaporthe, pathogenesis, asexual growth and thigmotropism. Embo J 26(3):690–700

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitive PCR and the 2-∆∆C t method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maciel JL, Ceresini PC, Castroagudin VL, Zala M, Kema GH, McDonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 2.5 years after its emergence in Brazil. Phytopathology 104:95–107

    Article  CAS  PubMed  Google Scholar 

  • Matheis S, Yemelin A, Scheps D et al (2017) Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation. Microbiol Res 196:106

    Article  CAS  PubMed  Google Scholar 

  • Morris-Jones R, Gomez BL, Diez S, Uran M, Morris-Jones SD, Casadevall A, Nosanchuk JD, Hamilton AJ (2005) Synthesis of melanin pigment by Candida albicans in vitro and during infection. Infect Immun 73:6147–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalley L, Tisboe F, Durand-Morat A, Shew A, Thoma G (2016) Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One 11:e0167295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanujam R, Yishi X, Liu H, Naqvi NI (2012) Structure-function analysis of Rgs1 in Magnaporthe oryzae: role of DEP domains in subcellular targeting. PLoS One 7:e41084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silue D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrun MH (1998) Identification and characterization of apf1—in anon-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Mol Plant Pathol 53:239–251

    Article  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ (2007) Functional analysis of lipid metabolism in Magnaporthe grisea reveals a role for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact 20:475–491

    Article  CAS  PubMed  Google Scholar 

  • Weijn A, Bastiaan-Net S, Wichers HJ, Mes JJ (2013) Melanin biosynthesis pathway in Agaricusbisporu smushrooms. Fungal Genet Biol 55:42–53

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure; investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang CQ, Zhu GN, Ma ZH et al (2010) Isolation, characterization and preliminary genetic analysis of laboratory tricyclazole-resistant mutants of the rice blast fungus, Magnaporthe grisea. J Phytopathol 154(7–8):392–397

    Google Scholar 

  • Zhou ZZ, Li G, Lin C, He C (2009) Conidiophore Stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact 22:402–410

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no. 31260418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Chao-zu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, H., Bang, A., Qing-biao, X. et al. Synergistic deletion of RGS1 and COS1 may reduce the pathogenicity of Magnaporthe oryzae. Arch Microbiol 201, 807–816 (2019). https://doi.org/10.1007/s00203-019-01646-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01646-8

Keywords

Navigation