Skip to main content

Advertisement

Log in

Chromosomal integration of heterologous oxalate decarboxylase in Lactobacillus plantarum WCFS1 using mobile genetic element Ll.LtrB

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus plantarum WCFS1 (L. plantarum WCFS1) is commonly used as a potential cell factory because of its ‘generally recognized as safe’ status. The plasmid instability and the presence of antibiotic selection marker complicate the application of genetically modified L. plantarum in human clinical trials. In the present study, we aimed to integrate oxalate decarboxylase (oxdC) gene of Bacillus subtilis origin by targeted chromosomal mutation in L. plantarum using mobile genetic element Ll.LtrB as a therapeutic tool against calcium oxalate stone disease. oxdC expression cassette was constructed and integrated into a targeted gene, thymidylate synthase (thyA) in the L. plantarum genome. The dependence on external thymidine for growth and survival was established by live dead population assay and SEM (scanning electron microscopy) analysis. The western blotting assay showed the secretion of 44 kDa OxdC protein in the culture supernatant of L. plantarum ∆thyA:OxdC. The biologically contained recombinant strain significantly reduced the oxalate concentration by 53% and exhibited a loss of viability when introduced to environmental samples. Biologically contained L. plantarum secreting OxdC constructed using group II intron has the ability to degrade oxalate present in the extracellular environment and could be used as a therapeutic tool for the calcium oxalate stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abhishek A, Benita S, Kumari M, Ganesan D, Paul E, Sasikumar P, Mahesh A, Yuvaraj S, Ramprasath T, Selvam GS (2017) Molecular analysis of oxalate induced endoplasmic reticulum stress mediated apoptosis in the pathogenesis of kidney stone disease. J Physiol Biochem 73:561–573

    Article  CAS  PubMed  Google Scholar 

  • Ahrné S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85:88–94

    Article  PubMed  Google Scholar 

  • Albert A, Tiwari V, Paul E, Ganesan D, Ayyavu M, Kujur R, Sasikumar P, Kathiresan S, Luciano S, Selvam GS (2017) Expression of heterologous oxalate decarboxylase in HEK293 cells confers protection against oxalate induced oxidative stress as a therapeutic approach for calcium oxalate stone disease. J Enzyme Inhib Med Chem 32:426–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert A, Tiwari V, Paul E, Ponnusamy S, Ganesan D, Prabhakaran R, Mariaraj SS, Govindan SS (2018) Oral administration of oxalate enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats. Toxicol Mech Methods 28:195–204

    Article  CAS  PubMed  Google Scholar 

  • Anbazhagan K, Sasikumar P, Gomathi S, Priya HP, Selvam GS (2013) In vitro degradation of oxalate by recombinant Lactobacillus plantarum expressing heterologous oxalate decarboxylase. J Appl Microbiol 115:880–887. https://doi.org/10.1111/jam.12269

    Article  CAS  PubMed  Google Scholar 

  • Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon J, Van deventer SJH, Neirynck S, Peppelenbosch MP, Steidler L (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759

    Article  CAS  PubMed  Google Scholar 

  • Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G, De Simone C (2001) Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 60:1097–1105. https://doi.org/10.1046/j.1523-1755.2001.0600031097.x

    Article  CAS  PubMed  Google Scholar 

  • Cowley AB, Poage DW, Dean RR, Meschter CL, Ghoddusi M, Li QS, Sindhu H (2010) 14-Day repeat-dose oral toxicity evaluation of Oxazyme in rats and dogs. Int J Toxicol 29:20–31

    Article  CAS  PubMed  Google Scholar 

  • De Vries MC, Vaughan EE, Kleerebezem M, De Vos WM (2006) Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J 16:1018–1028. https://doi.org/10.1016/j.idairyj.2005.09.003

    Article  CAS  Google Scholar 

  • Fredriksen L, Kleiveland CR, Hult LTO, Lea T, Nygaard CS, Eijsink VGH, Mathiesen G (2012) Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes. Appl Environ Microbiol 78:5864–5871. https://doi.org/10.1128/AEM.01227-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanin A, Culligan EP, Casey PG, Bahey-El-Din M, Hill C, Gahan CG (2014) Two-tiered biological containment strategy for Lactococcus lactis-based vaccine or immunotherapy vectors. Hum Vaccin Immunother 10:333–337

    Article  CAS  PubMed  Google Scholar 

  • Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167. https://doi.org/10.1038/nbt1201-1162

    Article  CAS  PubMed  Google Scholar 

  • Khan SR (2014) Reactive oxygen species inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol 3:256–276

    PubMed  PubMed Central  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995. https://doi.org/10.1073/pnas.0337704100

    Article  CAS  PubMed  Google Scholar 

  • Lambert JM, Bongers RS, Kleerebezem M (2007) Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 73:1126–1135. https://doi.org/10.1128/AEM.01473-06

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz AM, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3:a003616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Takala TM, Qiao M, Xu H, Saris PE (2011) Nisin-selectable food-grade secretion vector for Lactococcus lactis. Biotechnol Lett 33:797–803

    Article  CAS  PubMed  Google Scholar 

  • Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, Goldfarb DS (2010) Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int 78:1178–1185. https://doi.org/10.1038/ki.2010.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG (2009) Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genom 10:425. https://doi.org/10.1186/1471-2164-10-425

    Article  CAS  Google Scholar 

  • Mobergslien A, Vasovic V, Mathiesen G, Fredriksen L, Westby P, Eijsink VGH, Peng Q, Sioud M (2015) Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells. Hum Vaccin Immunother 11:2664–2673. https://doi.org/10.1080/21645515.2015.1056952

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul E, Sasikumar P, Gomathi S, Albert A, Selvam GS (2017) Recombinant LACTIC ACID BACTERIA secreting OxdC as a novel therapeutic tool for the prevention of kidney stone disease. In: Grumezescu AM (ed) Multifunctional systems for combined delivery, biosensing and diagnostics. Elsevier, Amsterdam, pp 327–345

    Chapter  Google Scholar 

  • Paul E, Albert A, Ponnusamy S, Srishti RM, Amalraj GV, Selvi MS, Gomathi S, Selvam GS (2018) Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II intron degrades intestinal oxalate in hyperoxaluric rats. Microbiol Res 215:65–75

    Article  CAS  PubMed  Google Scholar 

  • Perutka J, Wang W, Goerlitz D, Lambowitz AM (2004) Use of computer-designed group II Introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336:421–439. https://doi.org/10.1016/j.jmb.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sasikumar P, Gomathi S, Anbazhagan K, Selvam GS (2013) Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. Biomed Res Int. https://doi.org/10.1155/2013/280432

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasikumar P, Gomathi S, Anbazhagan K, Baby AE, Sangeetha J, Selvam GS (2014a) Genetically engineered Lactobacillus plantarum WCFS1 constitutively secreting heterologous oxalate decarboxylase and degrading oxalate under in vitro. Curr Microbiol 69:708–715. https://doi.org/10.1007/s00284-014-0644-2

    Article  CAS  PubMed  Google Scholar 

  • Sasikumar P, Gomathi S, Anbazhagan K, Abhishek A, Paul E, Vasudevan V, Sasikumar S, Selvam GS (2014b) Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci 21:86. https://doi.org/10.1186/s12929-014-0086-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasikumar P, Paul E, Gomathi S, Abhishek A, Sasikumar S, Selvam GS (2016) Mobile group II intron based gene targeting in Lactobacillus plantarum WCFS1. J Basic Microbiol 56:1107–1116. https://doi.org/10.1002/jobm.201500746

    Article  CAS  PubMed  Google Scholar 

  • Sørvig E, Grönqvist S, Naterstad K, Mathiesen G, Eijsink VGH, Axelsson L (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol Lett 229:119–126. https://doi.org/10.1016/S0378-1097(03)00798-5

    Article  CAS  PubMed  Google Scholar 

  • Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E (2003) Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21:785–789. https://doi.org/10.1038/nbt840

    Article  CAS  PubMed  Google Scholar 

  • Tanner A, Bornemann S (2000) Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J Bacteriol 182:5271–5273. https://doi.org/10.1128/JB.182.18.5271-5273.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegkamp A, Teusink B, de Vos WM, Smid EJ (2010) Development of a minimal growth medium for Lactobacillus plantarum. Lett Appl Microbiol 50:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Yang H, Zhu X, Li Y, Wang N, Han S, Xu H, Chen Z, Ye Z (2017) Oxalate degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria. Urology 17:31241–31244

    Google Scholar 

  • Zhong J, Lambowitz AM (2003) Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J 22:4555–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Department of Biotechnology (DBT), New Delhi, India (BT/PR4203/MED/30/681/2011). The first author thanks, CSIR, New Delhi for Senior Research Fellowship. The authors thank UGC-CEGS, -CAS, -NRCBS, DST-FIST, -PURSE, -SERB and DBT-IPLS program for the central instrumentation facility at SBS, MKU. The authors are grateful to Professor Michiel Kleerebezem, Wageningen, Centre for Food Sciences, Netherlands, for providing the strain Lactobacillus plantarum WCFS1, Professor Alan M. Lambowitz, School of Biological Sciences, University of Texas at Austin, USA for providing the plasmid pACD4C, Dr. Geir Mathiesen, Norwegian University of Life Sciences, Norway for providing plasmid pLP_0373AmyA, Dr. Stephen Bornemann for providing the plasmid pLB36 consisting oxdC gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvam Govindan Sadasivam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, E., Albert, A., Ponnusamy, S. et al. Chromosomal integration of heterologous oxalate decarboxylase in Lactobacillus plantarum WCFS1 using mobile genetic element Ll.LtrB. Arch Microbiol 201, 467–476 (2019). https://doi.org/10.1007/s00203-018-1585-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1585-0

Keywords

Navigation