Skip to main content

Advertisement

Log in

An overview of lectin–glycan interactions: a key event in initiating fungal infection and pathogenesis

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Infections due to microfungi are of serious concern in many parts of the world. Many species of microfungi are known to cause systemic infection in human beings. Pathogenic microorganisms employ various molecular strategies for colonizing a susceptible host. Recent studies have shown the importance of lectins from microfungi that enable the pathogen to interact with the host, resulting in host immune response. These fungal lectins or adhesins show specific affinities to the glycans present on the membrane proteins or lipids. Binding of the pathogen to the receptors, probably toll-like receptors or dectins, present on the host cell surface triggers/initiates a cascade of signalling pathways, leading to the activation of transcription factors such as NF-κB resulting in the release of proinflammatory cytokines which in turn recruit cells of the immune system to the site of microbial insult to combat the pathogen or resulting in pathogenesis. In this review, we will focus on the interaction between fungal lectins and the host glycans initiating pathogenesis and how the host immune system tries to suppress the pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Andrews NW, Colli W (1982) Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29:264–269

    Article  CAS  PubMed  Google Scholar 

  • Ballal S, Belur S, Laha P, Roy S, Swamy BM, Inamdar SR (2017) Mitogenic lectins from Cephalosporium curvulum (CSL) and Aspergillus oryzae (AOL) mediate host–pathogen interactions leading to mycotic keratitis. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-3050-9

    PubMed  Google Scholar 

  • Beuth J, Ko HL, Gabius HJ, Burrichter H, Oette K, Pulverer G (1992) Behavior of lymphocyte subsets and expression of activation markers in response to immunotherapy with galactoside-specific lectin from mistletoe in breast cancer patients. Clin Investig 70:658–661

    Article  CAS  PubMed  Google Scholar 

  • Beuth J, Ko HL, Pulverer G, Uhlenbruck G, Pichlmaier H (1995) Importance of lectins for the prevention of bacterial infections and cancer metastases. Glycoconj J 12:1–6

    Article  CAS  PubMed  Google Scholar 

  • Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. PNAS 101:17033–17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN, Boulianne RP, Charlton S, Farrell EM, Sucher A, Lu BC (1997) Fungal galectins, sequence and specificity of two isolectins from Coprinus cinereus. J Biol Chem 272:1514–1521

    Article  CAS  PubMed  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) Anadhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    Article  CAS  PubMed  Google Scholar 

  • Cunha Villar C, Chukwuedum Aniemeke J, Zhao XR, Huynh-Ba G (2012) Induction of apoptosis in oral epithelial cells by Candida albicans. Mol Oral Microbiol 27:436–448

    Article  PubMed  Google Scholar 

  • De Groot PW, Kraneveld EA, Yin QY, Dekker HL, Groß U, Crielaard W et al (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7:1951–1964

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N (2013) Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12:470–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Doig PETER., Todd T, Sastry PA, Lee KK, Hodges RS, Paranchych W, Irvin RT (1988) Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun 56:1641–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubourdeau M, Athman R, Balloy V, Huerre M, Chignard M, Philpott DJ et al (2006) Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol 177:3994–4001

    Article  CAS  PubMed  Google Scholar 

  • Esquenazi D, de Souza W, Alviano CS, Rozental S (2003) The role of surface carbohydrates on the interaction of microconidia of Trichophyton mentagrophytes with epithelial cells. FEMS Immun Med Microbiol 35:113–123

    Article  CAS  Google Scholar 

  • Esquenazi D, Alviano CS, de Souza W, Rozental S (2004) The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol 155:144–153

    Article  CAS  PubMed  Google Scholar 

  • Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ (2008) Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 10:2058–2066

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Luo G, Spellberg BJ, Edwards JE, Ibrahim AS (2008) Gene over expression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell 7:483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukazawa Y, Kagaya K (1997) Molecular bases of adhesion of Candida albicans. J Med Vet Mycol 35:87–99

    Article  CAS  PubMed  Google Scholar 

  • Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohl TM, Van Epps HL, Rivera A, Morgan LA, Chen PL et al (2005) Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog 1:e30

    Article  PubMed  PubMed Central  Google Scholar 

  • Hostetter MK (1994) Adhesins and ligands involved in the interaction of Candida spp. with epithelial and endothelial surfaces. Clin Microbiol Rev 7:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houser J, Komarek J, Kostlanova N, Cioci G, Varrot A, Kerr SC et al (2013) A soluble fucose-specific lectin from Aspergillus fumigatus conidia-structure, specificity and possible role in fungal pathogenicity. PLoS One 8:e83077

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  • Hoyer LL, Fundyga R, Hecht JE, Kapteyn JC, Klis FM, Arnold J (2001) Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 157:1555–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inamdar SR, Eligar SM, Ballal S, Belur S, Kalraiya RD, Swamy BM (2016) Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans. Glycoconj J 33:19–28

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Lucho V, Ginsburg V, Krivan HC (1990) Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), a possible adhesion receptor for yeasts. Infect Immun 58(7):2085–2090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG (2002) Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun 70:5256–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnchanatat A (2012) Antimicrobial activity of lectins from plants. Antimicrobial agents. InTech, London, pp 145–178

    Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    Article  CAS  PubMed  Google Scholar 

  • Kawagishi H, Nomura A, Mizuno T, Kimura A, Chiba S (1990) Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim Biophys Acta (BBA) Gen Subj 1034:247–252

    Article  CAS  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  • Kellens JT, Peumans WJ (1990) Developmental accumulation of lectin in Rhizoctonia solani: a potential role as a storage protein. Microbiology 136:2489–2495

    CAS  Google Scholar 

  • Kempf M, Cottin J, Licznar P, Lefrançois C, Robert R, Apaire-Marchais V (2009) Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence. Mycopathologia 168:73–77

    Article  CAS  PubMed  Google Scholar 

  • Kerr SC, Fischer GJ, Sinha M, McCabe O, Palmer JM, Choera T et al (2016). FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog 12(4):e1005555

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan F, Khan MI (2011) Fungal lectins: current molecular and biochemical perspectives. Int J Biol Chem 5:20

    Google Scholar 

  • Khan F, Ahmad A, Khan MI (2007) Interaction of Fusarium solani lectin with Monosaccharides and Oligosaccharides: a fluorometric study. Photochem Photobiol 83:966–970. https://doi.org/10.1111/j.1751-1097.2007.00095.x

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Eckmann L, Savidge TC, Lowe DC, Witthöft T, Kagnoff MF (1998) Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Investig 102:1815–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host–microbe interactions. Cell Host Microbe 5:580–592

    Article  CAS  PubMed  Google Scholar 

  • Konska G (2006) Lectins of higher fungi (Macromycetes)—their occurrence, physiological role, and biological activity. Int J Med Mushrooms 8:19–30

    Article  Google Scholar 

  • Leal SM Jr, Cowden S, Hsia Y-C, Ghannoum MA, Momany M et al (2010) Distinct roles for Dectin-1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis. PLoS Pathog 6(7):e1000976. https://doi.org/10.1371/journal.ppat.1000976

    Article  PubMed  PubMed Central  Google Scholar 

  • Levdansky E, Kashi O, Sharon H, Shadkchan Y, &Osherov N (2010) The Aspergillus fumigatus cspA gene encoding a repeat-rich cell wall protein is important for normal conidial cell wall architecture and interaction with host cells. Eukaryot Cell 9:1403–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Rollins JA (2010) The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genet Biol 47:531–538

    Article  CAS  PubMed  Google Scholar 

  • Lionakis MS, Iliev ID, Hohl TM (2017) Immunity against fungi. JCI Insight 2(11):e93156. https://doi.org/10.1172/jci.insight.93156

    Google Scholar 

  • Marakalala MJ, Kerrigan AM, Brown GD (2011) Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome 22:55–65

    Article  CAS  PubMed  Google Scholar 

  • Matsumura K, Higashida K, Hata Y, Kominami J, Nakamura-Tsuruta S, Hirabayashi J (2009) Comparative analysis of oligosaccharide specificities of fucose-specific lectins from Aspergillus oryzae and Aleuria aurantia using frontal affinity chromatography. Anal Biochem 386(2):217–221

    Article  CAS  PubMed  Google Scholar 

  • Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann J, Ebel F (2003) Toll like receptor (TLR) 2 and TLR4 are essential for Aspergillus induced activation of murine macrophages. Cell Microbiol 5:561–570

    Article  CAS  PubMed  Google Scholar 

  • Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 6:338–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulvey G, Kitov PI, Marcato P, Bundle DR, Armstrong GD (2001) Glycan mimicry as a basis for novel anti-infective drugs. Biochimie 83(8):841–847

    Article  CAS  PubMed  Google Scholar 

  • Nagre NN, Chachadi VB, Eligar SM, Shubhada C, Pujari R, Shastry P et al (2010) Purification and characterization of a mitogenic lectin from Cephalosporium curvulum, a pathogenic fungus causing mycotic keratitis. Biochem Res Int. https://doi.org/10.1155/2010/854656

    PubMed  PubMed Central  Google Scholar 

  • Netea MG, Van der Graaf CA, Vonk AG, Verschueren I, Van der Meer JW, Kullberg BJ (2002) The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Netea MG, Ferwerda G, van der Graaf CA, Van der Meer JW, Kullberg BJ (2006a) Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des 12:4195–4201

    Article  CAS  PubMed  Google Scholar 

  • Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G et al (2006b) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Investig 116:1642–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng TB (2004) Peptides and proteins from fungi. Peptides 25:1055–1073

    Article  CAS  PubMed  Google Scholar 

  • Ofek I, Kahane I, Sharon N (1996) Toward anti-adhesion therapy for microbial diseases. Trends Microbiol 4:297–299

    Article  CAS  PubMed  Google Scholar 

  • Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL, Anderson KC (1997) IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 159:2212–2221

    CAS  PubMed  Google Scholar 

  • Ozment-Skelton TR, deFluiter EA, Ha T, Li C, Graves BM et al (2009) Leukocyte Dectin-1 expression is differentially regulated in fungal versus polymicrobial sepsis. Crit Care Med 37:1038–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva PMG, Gomes FS, Napoleão TH, Sá RA, Correia MTS, Coelho LCBB. (2010) Antimicrobial activity of secondary metabolites and lectins from plants. Curr Res 1:396–406

    Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, DuX et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Raz A, Lotan R (1987) Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev 6:433–452

    Article  CAS  PubMed  Google Scholar 

  • Reid DM, Gow NA, Brown GD (2009) Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol 21:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder A, Kirschning CJ, Rupec RA, Schaller M, Korting HC (2004) Toll-like receptors and innate antifungal responses. Trends Microbiol 12:44–49

    Article  CAS  PubMed  Google Scholar 

  • Romani L (2004) Immunity to fungal infections. Nat Rev Immun 4:11–24

    Article  CAS  Google Scholar 

  • Rüdiger H (1998) Plant lectins—more than just tools for glycoscientists: occurrence, structure, and possible functions of plant lectins. Cells Tissues Organs 161:130–152

    Article  Google Scholar 

  • Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-α release in response to Cryptococcus neoformans polysaccharide capsule. J Immun 166:4620–4626

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Thakur S (2014) Antimicrobial activity and carbohydrate specificity of new mycelial lectins from Fusarium sp. Biologia 69:1295–1302

    CAS  Google Scholar 

  • Singh RS, Walia AK (2016) New mycelial lectins from Penicilli with complex carbohydrate specificity. Biologia 71:431–437

    CAS  Google Scholar 

  • Singh RS, Sharma S, Kaur G, Bhari R (2009) Screening of Penicillium species for occurrence of lectins and their characterization. J Basic Microbiol 49:471–476

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Bhari R, Singh J, Tiwary AK (2011) Purification and characterization of a mucin-binding mycelial lectin from Aspergillus nidulans with potent mitogenic activity. World J Microbiol Biotechnol 27:547–554

    Article  CAS  Google Scholar 

  • Singh RS, Jain P, Kaur HP (2013) Characterization and antimicrobial activity of lectins from Penicillium sp. Ind J Exp Biol 51:984–991

    CAS  Google Scholar 

  • Singh RS, Kaur HP, Singh J (2014) Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity. PLoS One 9:e109265

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RS, Kaur HP, Singh J (2015a) Purification and characterization of a mycelial mucin specific lectin from Aspergillus panamensis with potent mitogenic and antibacterial activity. Proc Biochem 50:2251–2258

    Article  CAS  Google Scholar 

  • Singh RS, Bhari R, KaurR (2015b) Purification, characterization, and mitogenic potential of a mucin-specific mycelial lectin from Aspergillus sparsus. App Biochem Biotechnol 175:1938–1947l

    Article  CAS  Google Scholar 

  • Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM (2011) Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 4:31–42

    Article  PubMed  Google Scholar 

  • Stones DH, Krachler AM (2015) Fatal attraction: how bacterial adhesins affect host signaling and what we can learn from them. Int J Mol Sci 16:2626–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BM, Bhat AG, Hegde GV, Naik RS, Kulkarni S, Inamdar SR (2004) Immunolocalization and functional role of Sclerotium rolfsii lectin in development of fungus by interaction with its endogenous receptor. Glycobiol 14:951–957

    Article  CAS  Google Scholar 

  • Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  • Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L et al (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882

    Article  CAS  PubMed  Google Scholar 

  • Taylor PR, Roy S, Leal SM Jr, Sun Y, Howell SJ, Cobb BA et al (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, ROR [gamma] t and dectin-2. Nat Immunol 15:143–151

    Article  CAS  PubMed  Google Scholar 

  • Tsoni SV, Brown GD (2008) β-glucans and dectin-1. Ann N Y Acad Sci 1143:45–60

    Article  CAS  PubMed  Google Scholar 

  • Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639

    Article  PubMed  PubMed Central  Google Scholar 

  • Varki A, Lowe JB (2009) Biological roles of glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, chap 6, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Vogel SN, Fenton M (2003) Toll-like receptor 4 signalling: new perspectives on a complex signal-transduction problem. Biochem Soc Trans 31:664–668

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Ng TB, Liu WK, Oou VEC, Chang ST (1995) Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholomamongolicum. Chem Biol Drug Des 46:508–513

    CAS  Google Scholar 

  • Warnatsch A, Tsourouktsoglou TD, Branzk N, Wang Q, Reincke S, Herbst S et al (2017) Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity 46:421–432

    Article  CAS  PubMed  Google Scholar 

  • Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM et al (2009) Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 182:4938–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatohgo T, Izumi M, Kashiwagi H, Hayashi M (1988) Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct 13:281–292

    Article  CAS  PubMed  Google Scholar 

  • Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM (2004) Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72:5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Lee KK, Ens K, Doig PC, Carpenter MR, Staddon W et al (1994) Partial characterization of a Candida albicans fimbrial adhesin. Infect Immun 62:2834–2842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K et al (2004) ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150:2415–2428

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Oh SH, Yeater KM, Hoyer LL (2005) Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151:1619–1630. https://doi.org/10.1099/mic.0.27763-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wu XY, Yu FSX (2009) Activation of Toll-like receptors 2 and 4 in Aspergillus fumigatus keratitis. Innate Immun 15:155–168

    Article  CAS  Google Scholar 

  • Zhao Q et al (2010) Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 9:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68(3):547–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the funding from Department of Science and Technology, India (no. SR/S0/BB-0085/2010/A /B) and UGC under CPEPA and UPE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashikala R. Inamdar.

Ethics declarations

Conflict of interest

None declared.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballal, S., Inamdar, S.R. An overview of lectin–glycan interactions: a key event in initiating fungal infection and pathogenesis. Arch Microbiol 200, 371–382 (2018). https://doi.org/10.1007/s00203-018-1487-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1487-1

Keywords

Navigation