Skip to main content
Log in

Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Microbial nitrification is a key process in the nitrogen cycle in the continental shelf ecosystems. The genotype compositions and abundance of the ammonia monooxygenase gene, amoA, derived from ammonia-oxidizing archaea (AOA) and bacteria (AOB) in two size fractions (2–10 and 0.2–2 µm), were investigated in the East China Sea (ECS) in May 2008 using PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR). Four sites were selected across the continental shelf edge: continental shelf water (CSW), Kuroshio branch water (KBW), transition between CSW and KBW (TCSKB) and coastal KBW (CKBW). The gene copy numbers of AOA-amoA were higher than those of AOB-amoA in ECS. The relative abundance of amoA to the total 16S rRNA gene level reached approximately 15% in KBW and CKBW for the free-living fraction of AOA, whereas the level was less than 0.01% throughout ECS for the AOB. A cluster analysis of the AOA-amoA-DGGE band pattern showed distinct genotype compositions in CSW in both the size fractions and in the surface of the TCSKB and KBW. Sequences of the DGGE bands were assigned to two clades. One of the clades exclusively consisted of sequences derived from the 2–10-µm fraction. This study revealed that AOA-amoA abundance dominated over AOB-amoA throughout the ECS, whereas the genotype composition of AOA-amoA were distributed heterogeneously across the water masses. Additionally, this is the first report showing the distribution of AOA-amoA genotypes characteristic to particle-associated AOA in the offshore of the East China Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agogué H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–791

    Article  PubMed  Google Scholar 

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355. doi:10.1038/nature04158

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari, Mexico. Appl Environ Microbiol 72:7767–7777. doi:10.1128/Aem.00946-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beman JM, Roberts KJ, Wegley L, Rohwer F, Francis CA (2007) Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. Appl Environ Microbiol 73:5642–5647. doi:10.1128/Aem.00461-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  CAS  PubMed  Google Scholar 

  • Bernhard AE, Tucker J, Giblin AE, Stahl DA (2007) Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ Microbiol 9:1439–1447. doi:10.1111/j.1462-2920.2007.01260.x

    Article  CAS  PubMed  Google Scholar 

  • Biller SJ, Mosier AC, Wells GF, Francis CA (2012) Global biodiversity of aquatic ammonia-oxidizing archaea is partitioned by habitat. Front Microbiol 3:252. doi:10.3389/fmicb.2012.00252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouskill NJ, Eveillard D, Chien D, Jayakumar A, Ward BB (2012) Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments. Environ Microbiol 14:714–729. doi:10.1111/j.1462-2920.2011.02623.x

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. doi:10.1038/nrmicro1852

    Article  CAS  PubMed  Google Scholar 

  • Caffrey JM, Bano N, Kalanetra K, Hollibaugh JT (2007) Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J 1:660–662. doi:10.1038/ismej.2007.79

    Article  PubMed  Google Scholar 

  • Chen CTA (2009) Chemical and physical fronts in the Bohai, Yellow and East China seas. J Mar Syst 78:394–410. doi:10.1016/j.jmarsys.2008.11.016

    Article  Google Scholar 

  • Chiang KP, Chen YT, Gong GC (1999) Spring distribution of diatom assemblages in the East China Sea. Mar Ecol Prog Ser 186:75–86. doi:10.3354/meps186075

    Article  Google Scholar 

  • Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Damsté JSS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • Dang HY, Zhang XX, Sun J, Li TG, Zhang ZN, Yang GP (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154:2084–2095

    Article  CAS  PubMed  Google Scholar 

  • De Corte D, Yokokawa T, Varela MM, Agogué H, Herndl GJ (2009) Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J 3:147–158

    Article  PubMed  Google Scholar 

  • DeLong EF, Wu KY, Prézelin BB, Jovine RVM (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697. doi:10.1038/371695a0

    Article  CAS  PubMed  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869. doi:10.1111/j.1574-6976.2009.00179.x

    Article  CAS  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688. doi:10.1073/pnas.0506625102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya K, Hayashi M, Yabushita Y, Ishikawa A (2003) Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Res II 50:367–387

    Article  CAS  Google Scholar 

  • Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC (2009) Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol 11:971–980

    Article  PubMed  Google Scholar 

  • Gallup JM (2011) Difficult templates and inhibitions of PCR. In: Kennedy S, Oswald N (eds) PCR troubleshooting and optimization. Caister Academic Press, Edingurgh, pp 23–66

    Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:E95, 520–536. doi: 10.1371/journal.pbio.0040095

    Article  Google Scholar 

  • Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu AY, Jiao NZ, Zhang R, Yang Z (2011) Niche partitioning of marine group I crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea. Appl Environ Microbiol 77:7469–7478. doi:10.1128/Aem.00294-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iseki K (1994) Role of continental margins in the global biogeochemical cycles: MASFLEX East China Sea project. Umi Sora 14:99–103

    Google Scholar 

  • Iseki K, Okamura K, Kiyomoto Y (2003) Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep-Sea Res II 50:457–473. doi:10.1016/S0967-0645(02)00468-X

    Article  CAS  Google Scholar 

  • Isobe A, Fujiwara E, Chang PH, Sugimatsu K, Shimizu M, Matsuno T, Manda A (2004) Intrusion of less saline shelf water into the Kuroshio subsurface layer in the East China Sea. J Oceanogr 60:853–863

    Article  Google Scholar 

  • Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11:2434–2445

    Article  CAS  PubMed  Google Scholar 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57:47–98. doi:10.1023/A:1015798105851

    Article  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  CAS  PubMed  Google Scholar 

  • Kirchman DL, Elifantz H, Dittel AI, Malmstrom RR, Cottrell MT (2007) Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol Oceanogr 52:495–507

    Article  CAS  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Lam P, Jensen MM, Lavik G, McGinnis DF, Muller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci USA 104:7104–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Dimitri G, Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106:4752–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuko S, Goh F, Ibáñezz-Peral R, Burns BP, Walter MR, Neilan BA (2008) Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 12:301–308

    Article  CAS  PubMed  Google Scholar 

  • Liu KK, Peng TH, Shaw PT, Shiah FK (2003) Circulation and biogeochemical processes in the East China Sea and the vicinity of Taiwan: an overview and a brief synthesis. Deep-Sea Res II 50:1055–1064. doi:10.1016/S0967-0645(03)00009-2

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi: 10.1093/nar/gkh293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  • Matsuno T, Shimizu M, Morii Y, Nishida H, Takaki Y (2005) Measurements of the turbulent energy dissipation rate around the shelf break in the East China Sea. J Oceanogr 61

  • Matsuno T, Lee JS, Yanao S (2009) The Kuroshio exchange with the South and East China Seas. Ocean Sci 5:303–312

    Article  Google Scholar 

  • Minagawa M, Ohashi M, Kuramoto T, Noda N (2001) δ15N of PON and nitrate as a clue to the origin and transformation of nitrogen in the subarctic north Pacific and its marginal sea. J Oceanogr 57:285–300. doi:10.1023/a:1012430512137

    Article  CAS  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Kar DM, DeLong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175

    Article  CAS  PubMed  Google Scholar 

  • Moin NS, Nelson KA, Bush A, Bernhard AE (2009) Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl Environ Microbiol 75:7461–7468. doi:10.1128/Aem.01001-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina V, Belmar L, Ulloa O (2010) High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. Environ Microbiol 12:2450–2465

    Article  CAS  PubMed  Google Scholar 

  • Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016. doi:10.1111/j.1462-2920.2008.01764.x

    Article  CAS  PubMed  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212. doi:10.1016/j.tim.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  • Nunoura T, Hirayama H, Takami H, Oida H, Nishi S, Shimamura S, Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K (2005) Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ Microbiol 7:1967–1984. doi:10.1111/j.1462-2920.2005.00881.x

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legender P, O’Hara B, Simpson GL, Stevens MHH, Wagner H (2008) Vegan: community ecology package. R Package Vegan 1.13–1

  • Pester M, Rattei T, Flechl S, Grongroft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539. doi:10.1111/j.1462-2920.2011.02666.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382. doi:10.1128/aem.66.12.5368-5382.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro AE, Francis CA, de Sieyes NR, Boehm AB (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 10:1068–1079. doi:10.1111/j.1462-2920.2007.01547.x

    Article  CAS  PubMed  Google Scholar 

  • Santoro AE, Casciotti KL, Francis CA (2010) Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol 12:1989–2006

    Article  CAS  PubMed  Google Scholar 

  • Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. In: Paul JH (ed) Marine microbiology. Academic Press, San Diego, pp 425–468

    Chapter  Google Scholar 

  • Shanks AL, Trent JD (1979) Marine snow: microscale nutrient patches 1. Limnol Oceanogr 24:850–854. doi:10.4319/lo.1979.24.5.0850

    Article  CAS  Google Scholar 

  • Shiozaki T, Furuya K, Kurotori H, Kodama T, Takeda S, Endoh T, Yoshikawa Y, Ishizaka J, Matsuno T (2011) Imbalance between vertical nitrate flux and nitrate assimilation on a continental shelf: implications of nitrification. J Geophys Res Oceans 116:C10031. doi:10.1029/2010jc006934

    Article  Google Scholar 

  • Singh SK, Verma P, Ramaiah N, Anil AC, Shouche YS (2010) Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes from tropical estuarine sediments on the central west coast of India. Res Microbiol 161:177–186

    Article  CAS  PubMed  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340. doi:10.1016/j.tim.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  • Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258

    Article  CAS  Google Scholar 

  • Tsunogai S, Iseki K, Kusakabe M, Saito Y (2003) Biogeochemical cycles in the East China Sea: MASFLEX program. Deep-Sea Res II 50:321–326. doi:10.1016/S0967-0645(02)00456-3

    Article  CAS  Google Scholar 

  • Wankel SD, Mosier AC, Hansel CM, Paytan A, Francis CA (2011) Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl Environ Microbiol 77:269–280. doi:10.1128/Aem.01318-10

    Article  CAS  PubMed  Google Scholar 

  • Woebken D, Fuchs BM, Kuypers MM, Amann R (2007) Potential interactions of particle-associated anammox bacteria with bacterial and archaeal partners in the Namibian upwelling system. Appl Environ Microbiol 73:4648–4657. doi:10.1128/AEM.02774-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagi T, Shimizu T, Lie HJ (1998) Detailed structure of the Kuroshio frontal eddy along the shelf edge of the East China Sea. Cont Shelf Res 18:1039–1056. doi:10.1016/S0278-4343(98)80005-8

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the efforts of the captain and crews of the R/V Tansei-Maru in facilitating sample collection for this study. We also thank to H. Endo for assistance. We also acknowledge support from the Hong Kong RGC (GRF661610 and 661911) and a HKUST Post-Doctoral Fellowship (PDF) matching fund; the Ministry of Education, Culture, Sports, Science and Technology, Japan for the Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries; and the JSPS Grant-in-Aid for Scientific Research on Innovative Areas (24121004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Kataoka.

Additional information

Communicated by Harald Huber.

The nucleotide sequences of amoA determined in this study have been deposited in the DNA Data Bank of Japan (DDBJ) nucleotide sequence database under Accession Numbers AB666167–AB666221.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 543 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataoka, T., Suzuki, K., Irino, T. et al. Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring. Arch Microbiol 200, 329–342 (2018). https://doi.org/10.1007/s00203-017-1442-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1442-6

Keywords

Navigation