Skip to main content
Log in

Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This work aimed to rely expression of the fengycin promoter to fengycin production under different culture conditions. To this end, Bacillus subtilis BBG208, derived from BBG21, which is a fengycin overproducing strain carrying the green fluorescent protein (GFP) under the control of fengycin promoter, was used to assess the effects of different carbon and nitrogen sources on surfactin and fengycin production and the fengycin promoter expression. The data showed that some carbon sources oriented synthesis of one family of lipopeptides, while most of the nitrogen sources allowed high co-production of fengycin and surfactin. High expressions of promoter Pfen and fengycin synthesis were obtained with urea or urea + ammonium mixture as nitrogen source and mannitol as carbon source. Moreover, temperature, pH and oxygenation influenced their biosynthesis based on the nutrition conditions. Optimization of the production medium increased the fengycin production to 768 mg L−1, which is the highest level reported for this strain. This study defines the suitable nutrient conditions allowing as well the highest expression of the fengycin promoter and portrays the conditions relying on the fengycin and surfactin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Mawgoud M, Aboulwafa M, Hassouna H (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:305–325. doi:10.1007/s12010-008-8155-x

    Article  CAS  PubMed  Google Scholar 

  • Abushady M, Bashandy S, Aziz H, Ibrahim M (2005) Molecular characterization of Bacillus subtilis surfactin producing strain and the factors affecting its production. Int J Agric Biol 3:337–344

    Google Scholar 

  • Besson F, Chevanet C, Michel G (1987) Influence of the culture medium on the production of iturin A by Bacillus subtilis. J Gen Microbiol 3:767–772

    Google Scholar 

  • Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295. doi:10.1111/1751-7915.12238

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I et al (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014. doi:10.1038/nbt1325

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37. doi:10.1016/j.jbiotec.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  • Chtioui O, Dimitrov K, Gancel F, Dhulster P, Nikov I (2014) Selective fengycin production in a modified rotating discs bioreactor. Bioprocess Biosyst Eng 37:107–114. doi:10.1007/s00449-013-0964-9

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosby M, Vollenbroich D, Lee H, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0 K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coutte F, Lecouturier D, Yahia SA, Leclère V, Béchet M, Jacques P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507. doi:10.1007/s00253-010-2504-8

    Article  CAS  PubMed  Google Scholar 

  • Davis A, Lynch C, Varley J (1999) The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Technol 25:322–329. doi:10.1016/S0141-0229(99)00048-4

    Article  CAS  Google Scholar 

  • Ditmer EM (2014) Evaluation of the anti-proliferative effect of the lipopeptides iturin A and fengycin of Bacillus spp. and the viral fusion protein PTD4-VP3 on human cancer and normal cells. Masters Dissertation, Federal University of Rio Grande do Sul, Brazil, p 115

  • Fahim S, Dimitrov K, Gancel F, Vauchel P, Jacques P, Nikov I (2012) Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresour Technol 126:1–6. doi:10.1016/j.biortech.2012.09.019

    Article  CAS  PubMed  Google Scholar 

  • Fracchia L, Cavallo M, Giovanna M, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications, present status and future potentials. In: Ghista DN (ed.) Biomedical Science, Engineering and Technology, pp 325–370

  • Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta Protein Struct Mol Enzymol 1205:19–28. doi:10.1016/0167-4838(94)90087-6

    Article  CAS  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. doi:10.4061/2011/653654 (Epub 2011)

    PubMed  PubMed Central  Google Scholar 

  • Hathout YA, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496. doi:10.1021/np000169q

    Article  CAS  PubMed  Google Scholar 

  • Huang QX, Lu ZX, Zhao HZ, Bie XM, Lu FX, Yang SJ (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, Newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377. doi:10.1007/s10989-006-9041-4

    Article  Google Scholar 

  • Huang X, Liu JN, Wang Y, Liu J, Lu L (2015) The positive effects of Mn2 + on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332. Biotechnol Biotechnol Equip 29:381–389. doi:10.1080/13102818.2015.1006905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam M, Jeong T, Lee S, Song H (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology 40:59–66. doi:10.5941/MYCO.2012.40.1.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp., In: Soberon-Chavez G (ed.) Biosurfactants, microbiology monographs 20, pp 57–91. doi: 10.1007/97836421449053

  • Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotechnol 77–79:223–233

    Article  Google Scholar 

  • Karatas Y, Çetin S, Özcengiz G (2003) The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim Biophys Acta Gene Struct Expr 1626:51–56. doi:10.1016/S0167-4781(03)00037-X

    Article  Google Scholar 

  • Kim I, Ryu J, Kim H, Chi T (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145. doi:10.4014/jmb.0905.05007

    CAS  PubMed  Google Scholar 

  • Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:530–541

    Article  Google Scholar 

  • Lee K, Yoon D, Yoon H, Lee G, Song J, Kim G, Kim S (2007) Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli. Appl Microbiol Biotechnol 75:567–572. doi:10.1007/s00253-007-0845-8

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81:6601–6609. doi:10.1128/AEM.01639-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makkar S, Cameotra S (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18:37–42

    Article  CAS  Google Scholar 

  • Mukherjee AK, Das K (2005) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol 54:479–489. doi:10.1016/j.femsec.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi:10.1016/j.tim.2007.12.009

    Article  CAS  PubMed  Google Scholar 

  • Pryor SW, Siebert KJ, Gibson DM, Gossett JM, Walker LP (2007) Modeling production of antifungal compounds and their role in biocontrol product inhibitory activity. J Agric Food Chem 55:9530–9536. doi:10.1021/jf0719252

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers M, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Rajendran D, Venkatachalam P, Ramakrishnan J (2014) Response surface methodology: optimisation of antifungal bioemulsifier from novel Bacillus thuringiensis. Sci World J. doi:10.1155/2014/423289 (Epub 2014 Oct 14)

    Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WGD, Xuewen G, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911. doi:10.1139/W07-04

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506. doi:10.1007/s00792-002-0287-2

    Article  CAS  PubMed  Google Scholar 

  • Sinchaikul S, Sookkheo B, Topanuruk S, Juan HF, Phutrakul S, Chen ST (2002) Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J Chromatog B 771:261–287

    Article  CAS  Google Scholar 

  • Singh K, Rautela R, Cameotra S (2014) Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb Cell Fact 13:67–77. doi:10.1186/1475-2859-13-67

    Article  PubMed  PubMed Central  Google Scholar 

  • Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41. doi:10.1016/S1074-5521(99)80018-0

    Article  CAS  PubMed  Google Scholar 

  • Thompson N, Fox L, Bala A (2001) The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis. In: Davison BH, McMillan JD, Finkelstein M (eds) Twenty-second symposium on biotechnology for fuels and chemicals. Humana Press, Springer, New York, pp 487–501

    Chapter  Google Scholar 

  • Tosato V, Albertini AM, Zotti M, Sonda S, Bruschi CV (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Varadavenkatesan T, Murty R (2013) Production of a lipopeptide biosurfactant by a novel Bacillus sp and its applicability to enhanced oil recovery. ISRN Microbiol. doi:10.1155/2013/621519

    PubMed  PubMed Central  Google Scholar 

  • Volpon L, Besson F, Lancelina JM (2000) NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS Lett 485:76–80. doi:10.1016/S0014-5793(00)02182-7

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Wang LC, Chen WC, Chen SY (2010) Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int J Mol Sci 11:4526–4538. doi:10.3390/ijms11114526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Chen CL, Lee YH, Cheng YC, Wu YC, Shu HY (2007) Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases. J Biol Chem 282:5608–5616. doi:10.1074/jbc.M609726200

    Article  CAS  PubMed  Google Scholar 

  • Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P (2016) Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol 167:272–281. doi:10.1016/j.resmic.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F, Lu Z (2013) Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs 24:587–598. doi:10.1097/CAD.0b013e3283611395

    CAS  PubMed  Google Scholar 

  • Zeriouh H, Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16:2196–2211. doi:10.1111/1462-2920.12271

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Wang P, Wu Q (2013) Optimization of culture conditions for biosynthesis of lipopeptide by Bacillus subtilis with starch. Appl Mechanics Mat 291:225–229. doi:10.4028/www.scientific.net/AMM.291-294.225

    Article  Google Scholar 

  • Zhu Z, Sun L, Huang X, Ran W, Shen Q (2014) Comparison of the kinetics of lipopeptide production by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation under isothermal and non-isothermal conditions. World J Microbiol Biotechnol 30:1615–1623. doi:10.1007/s11274-013-1587-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Yazen Yaseen received a PhD grant from the Iraqi and French governments through Campus France. We thank our colleagues from the REALCAT platform for their collaboration. This platform benefited from a government subvention administered by the French National Research Agency (ANR) with the contractual reference ANR-11-EQPX-0037.The authors also thank the CPER/FEDER Alibiotech obtained from la region des Hauts-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jacques.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, Y., Gancel, F., Béchet, M. et al. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production. Arch Microbiol 199, 1371–1382 (2017). https://doi.org/10.1007/s00203-017-1406-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1406-x

Keywords

Navigation