Skip to main content

Advertisement

Log in

Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cooper DG, Zajic JE, Gerson DF (1979) Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol 37:4–10

    Article  CAS  Google Scholar 

  • Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Singeren D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:821–831

    Article  CAS  Google Scholar 

  • Cheng S, Fockler C, Barnes WM, Higuchi R (1994) Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci USA 91:5695–5699

    Article  CAS  Google Scholar 

  • Doi RH (1983) Chromosomal DNA techniques. In: Rodriguez RL, Tait RC (eds) Recombinant DNA techniques. Addison-Wesley, Reading, MA, pp 161–163

    Google Scholar 

  • Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 13:559–570

    Article  CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmid. Gene 96:23–28

    Article  CAS  Google Scholar 

  • Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of β-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf B Biointerfaces 4:341–348

    Article  CAS  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Biol 9:393–405

    Article  CAS  Google Scholar 

  • Kim HS, Lee CH, Suh HH, Ahn KH, Oh MH, Kwon GS, Yang JW, Yoon BD (1997a) A lipopeptide biosurfactant produced by Bacillus subtilis C9 selected through the oil film-collapsing assay. J Microbiol Biotechnol 7:180–188

    CAS  Google Scholar 

  • Kim HS, Yoon BD, Lee CH, Suh HH, Oh MH, Katsuragi T, Tani Y (1997b) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. J Ferment Bioeng 84:41–46

    Article  Google Scholar 

  • Kim HS, Kim SB, Park SH, Oh MH, Park YI, Kim CK, Katsuragi T, Tani Y, Yoon BD (2000) Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis C9. Biotechnol Lett 22:1431–1436

    Article  CAS  Google Scholar 

  • Konz D, Doekel S, Marahiel MA (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140

    Article  CAS  Google Scholar 

  • Lasken RS, Schuster DM, Rashtchian A (1996) Archaebacterial DNA polymerases tightly bind uracil-containing DNA. J Biol Chem 271:17692–17696

    Article  CAS  Google Scholar 

  • Lee YK, Kim SB, Park CS, Kim JG, Oh HM, Yoon BD, Kim HS (2005) Chromosomal integration of sfp gene in Bacillus subtilis to enhance bioavailability of hydrocarbon liquids. Appl Microbiol Biotechnol 67:789–794

    Article  CAS  Google Scholar 

  • Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3611–3618

    Google Scholar 

  • McElhinney LM, Cooper RJ, Morris DJ (1995) Multiplex polymerase chain reaction for human herpesvirus-6, human cytomegalovirus, and human β-globin DNA. J Virol Methods 53:223–233

    Article  CAS  Google Scholar 

  • Nakano MM, Xia L, Zuber P (1991) Transcription initiation region of the srfA operon, which is controlled by the comPcomA signal transduction system in Bacillus subtilis. J Bacteriol 173:5487–5493

    Article  CAS  Google Scholar 

  • Rees WA, Yager TD, Korte J, von Hippel PH (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32:137–144

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sascha D, Eppelmann K, Marahiel MA (2002) Heterologous expression of nonribosomal peptide synthetasese in B. subtilis: construction of a bi-directional B. subtilis/E. coli shuttle vector system. FEMS Microbiol Lett 216:185–191

    Article  Google Scholar 

  • Sheppard JD, Jumarie C, Cooper DG, Laprade R (1991) Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta 1064:13–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Research Institute of Bioscience and Biotechnology Research Initiative Program and the Ministry of Science and Technology (MOST)/Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant no. R15-2003-012-02001-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Sik Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YK., Yoon, BD., Yoon, JH. et al. Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli . Appl Microbiol Biotechnol 75, 567–572 (2007). https://doi.org/10.1007/s00253-007-0845-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0845-8

Keywords

Navigation