Skip to main content
Log in

Hydroxy-Al and cell-surface negativity are responsible for the enhanced sensitivity of Rhodotorula taiwanensis to aluminum by increased medium pH

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Aluminum (Al) is ubiquitous and toxic to microbes. High Al3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1–4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH2+ and Al(OH) +2 rather than Al3+. The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1–4.2 was associated with increased hydroxy-Al and cell-surface negativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aciego Pietri JC, Brookes PC (2008) Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem 40:1856–1861

    Article  CAS  Google Scholar 

  • Che J, Zhao XQ, Zhou X, Jia ZJ, Shen RF (2015) High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Appl Soil Ecol 85:21–29

    Article  Google Scholar 

  • Degenhardt J, Larsen PB, Howell SH, Kochian LV (1998) Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol 117:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll CT, Schecher WD (1990) The chemistry of aluminum in the environment. Environ Geochem Health 12:28–49

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Quentmeier A, Gansel S, Sabados V, Friedrich CG (2002) Inducible aluminum resistance of Acidiphilium cryptum and aluminum tolerance of other acidophilic bacteria. Arch Microbiol 178:554–558

    Article  CAS  PubMed  Google Scholar 

  • Flis SE, Glenn AR, Dilworth MJ (1993) The interaction between aluminium and root nodule bacteria. Soil Biol Biochem 25:403–417

    Article  CAS  Google Scholar 

  • Godbold DL, Jentschke G, Marschner P (1995) Solution pH modifies the response of Norway spruce seedlings to aluminium. Plant Soil 171:175–178

    Article  CAS  Google Scholar 

  • Grauer UE, Horst WJ (1990) Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.). Plant Soil 127:13–21

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Hu ZM, Zhao XQ, Bao XM, Wang C, Wang W, Zheng L, Lan P, Shen RF (2016) A potential contribution of the less negatively charged cell wall to the high aluminum tolerance of Rhodotorula taiwanensis RS1. Yeast 33:575–586

    Article  CAS  Google Scholar 

  • Kanazawa S, Kunito T (1996) Preparation of pH 3.0 agar plate, enumeration of acid-tolerant, and Al-resistant microorganisms in acid soils. Soil Sci Plant Nutr 42:165–173

    Article  CAS  Google Scholar 

  • Kanazawa S, Chau NTT, Miyaki S (2005) Identification and characterization of yeasts with tolerance to high acidity and resistance to aluminum isolated from tea soils. Soil Sci Plant Nutr 51:507–513

    Article  CAS  Google Scholar 

  • Kawai F, Zhang D, Sugimoto M (2000) Isolation and characterization of acid- and Al-tolerant microorganisms. FEMS Microbiol Lett 189:143–147

    Article  CAS  PubMed  Google Scholar 

  • Kimoto K, Aizawa T, Urai M, Ve NB, Suzuki K, Nakajima M, Sunairi M (2010) Acidocella aluminiidurans sp. nov., an aluminium-tolerant bacterium isolated from Panicum repens grown in a highly acidic swamp in actual acid sulfate soil area of Vietnam. Int J Syst Evol Micr 60:764–768

    Article  CAS  Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminium species. Plant Soil 134:167–178

    Article  CAS  Google Scholar 

  • Kinraide TB (1994) Use of a Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiol 106:1583–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinraide TB (1997) Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminium. J Exp Bot 48:1115–1124

    Article  CAS  Google Scholar 

  • Kinraide TB, Parker DR (1989) Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant, Cell Environ 12:479–487

    Article  CAS  Google Scholar 

  • Kinraide TB, Sweeney BK (2001) Buffered, phosphate-containing media suitable for aluminum toxicity studies. Plant Soil 235:75–83

    Article  CAS  Google Scholar 

  • Kinraide TB, Sweeney BK (2003) Proton alleviation of growth inhibition by toxic metals (Al, La, Cu) in rhizobia. Soil Biol Biochem 35:199–205

    Article  CAS  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Konishi S, Souta I, Takahashi J, Ohmoto M, Kaneko S (1994) Isolation and characteristics of acid- and aluminum-tolerant bacterium. Biosci Biotech Biochem 58:1960–1963

    Article  CAS  Google Scholar 

  • Kopittke PM, Menzies NW, Blamey FPC (2004) Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant Soil 266:177–186

    Article  CAS  Google Scholar 

  • Kopittke PM, Wang P, Menzies NW, Naidu R, Kinraide TB (2014) A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant Soil 375:35–46

    Article  CAS  Google Scholar 

  • Kunito T, Owaki M, Ihyo Y, Sumi H, Toda H, Fukuda D, Park HD (2012) Genera Burkholderia and Lipomyces are predominant aluminum-resistant microorganisms isolated from acidic forest soils using cycloheximide-amended growth media. Ann Microbiol 62:1339–1344

    Article  CAS  Google Scholar 

  • Liang LZ, Zhao XQ, Yi XY, Chen ZC, Dong XY, Chen RF, Shen RF (2013) Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Soil Use Manage 29:161–168

    Article  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252

    Article  CAS  PubMed  Google Scholar 

  • MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  CAS  PubMed  Google Scholar 

  • Mulder J, Stein A (1994) The solubility of aluminum in acidic forest soils: long-term changes due to acid deposition. Geochim et Cosmochim Ac 58:85–94

    Article  CAS  Google Scholar 

  • Mulder J, van Breemen N, Eijck HC (1989) Depletion of soil aluminum by acid deposition and implications for acid neutralization. Nature 337:247–249

    Article  CAS  Google Scholar 

  • Nayak P (2002) Aluminum: impacts and disease. Environ Res Sect A 89:101–115

    Article  CAS  Google Scholar 

  • Nguyen VAT, Senoo K, Mishima T, Hisamatsu M (2001) Multiple tolerance of Rhodotorula glutinis R-1 to acid, aluminum ion and manganese ion, and its unusual ability of neutralizing acidic medium. J Biosci Bioeng 92:366–371

    Article  CAS  PubMed  Google Scholar 

  • Odani T, Shimma Y, Wang XH, Jigami Y (1997) Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420:186–190

    Article  CAS  PubMed  Google Scholar 

  • Parker DR, Kinraide TB, Zelazny LW (1988) Aluminum speciation and phytotoxicity in dilute hydroxy-aluminum solutions. Soil Sci Soc Am J 52:438–444

    Article  CAS  Google Scholar 

  • Piña RG, Cervantes C (1996) Microbial interactions with aluminium. Biometals 9:311–316

    Article  PubMed  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010a) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2010b) Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem 42:926–934

    Article  CAS  Google Scholar 

  • Tani A, Zhang D, Duine JA, Kawai F (2004) Treatment of the yeast Rhodotorula glutinis with AlCl3 leads to adaptive acquirement of heritable aluminum resistance. Appl Microbiol Biotechnol 65:344–348

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Inoue C, Tanaka Y, Yamamoto Y, Kondo H, Hiradate S, Kimbara K, Kawai F (2008) The crucial role of mitochondrial regulation in adaptive aluminium resistance in Rhodotorula glutinis. Microbiology 154:3437–3446

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Kawahara T, Yamamoto Y, Kimbara K, Kawai F (2010) Genes involved in novel adaptive aluminum resistance in Rhodotorula glutinis. J Biosci Bioeng 109:453–458

    Article  CAS  PubMed  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wagatsuma T, Ezoe Y (1985) Effect of pH on ionic species of aluminum in medium and on aluminum toxicity under solution culture. Soil Sci Plant Nutr 31:547–561

    Article  CAS  Google Scholar 

  • Wagatsuma T, Kaneko M (1987) High toxicity of hydroxy-aluminum polymer ions to plant roots. Soil Sci Plant Nutr 33:57–67

    Article  CAS  Google Scholar 

  • Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF (2013a) Proteomic analysis of a high aluminum tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminum stress. BBA-Proteins Proteom 1834:1969–1975

    Article  CAS  Google Scholar 

  • Wang C, Zhao XQ, Aizawa T, Sunairi M, Shen RF (2013b) High aluminum tolerance of Rhodotorula sp. RS1 is associated with thickening of the cell wall rather than chelation of aluminum ions. Pedosphere 23:29–38

    Article  Google Scholar 

  • Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF, Shen RF (2015) Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant, Cell Environ 38:1382–1390

    Article  CAS  Google Scholar 

  • Yang JL, Zheng SJ, He YF, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44:48–55

    Article  Google Scholar 

  • Zhao XQ, Shen RF, Sun QB (2009) Ammonium under solution culture alleviates aluminum toxicity in rice and reduces aluminum accumulation in roots compared with nitrate. Plant Soil 315:107–121

    Article  CAS  Google Scholar 

  • Zhao XQ, Aizawa T, Schneider J, Wang C, Shen RF, Sunairi M (2013) Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes. MicrobiologyOpen 2:308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XQ, Chen RF, Shen RF (2014) Coadaptation of plants to multiple stresses in acidic soils. Soil Sci 179:503–513

    Article  CAS  Google Scholar 

  • Zheng SJ, Lin X, Yang J, Liu Q, Tang C (2004) The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (Triticum aestivum L.) cultivar. Plant Soil 261:85–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31672229, 41271257, and 41230855) and the National Key Basic Research Program of China (No. 2014CB441000). We thank Jian Zhou He for technical support in analyzing the cell-surface zeta potential.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Li Zheng or Ren Fang Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.Q., Bao, X.M., Wang, C. et al. Hydroxy-Al and cell-surface negativity are responsible for the enhanced sensitivity of Rhodotorula taiwanensis to aluminum by increased medium pH. Arch Microbiol 199, 1185–1194 (2017). https://doi.org/10.1007/s00203-017-1387-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1387-9

Keywords

Navigation