Skip to main content

Advertisement

Log in

Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Brucellosis is an infectious disease that affects practically all species of mammals, including human, and is a major zoonosis worldwide. Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in phagocytic and nonphagocytic cells such as trophoblast and epithelial cells. Among the six recognized species of the genus Brucella, Brucella melitensis is the main etiological agent involved in goat brucellosis and is also the most pathogenic for human. It causes significant losses in livestock production as a result of abortions, metritis, infertility, and birth of weak animals. Outer membrane proteins (OMPs) are exposed on the bacterial surface and are in contact with cells and effectors of the host immune response, whereby they could be important virulence factors of Brucella species. To evaluate this hypothesis, the gene encoding for the major outer membrane protein Omp31 was amplified, cloned into pUC18 plasmid, and inactivated by inserting a kanamycin cassette, rendering pLVM31 plasmid which was transformed into B. melitensis wild-type strain to obtain LVM31 mutant strain. The Outer membrane (OM) properties of the mutant strain were compared with B. melitensis Bm133 wild-type and B. melitensis Rev1 vaccine strains, in assessing its susceptibility to polymyxin B, sodium deoxycholate, and nonimmune serum. The mutant strain was assessed in vitro with survival assays in murine macrophages J774.A1 and HeLa cells. Our results demonstrate that LVM31 mutant is more susceptible to polymyxin B, sodium deoxycholate, and nonimmune serum than control strains; moreover, Omp31 mutation caused a decrease in the internalization and a significant decrease in the intracellular survival compared with the reference strains in both cell lines. These results allow us to conclude that Omp31 is important for maintaining OM integrity, but also it is necessary for bacterial internalization, establishment and development of an optimal replication niche, and essential for survival and intracellular multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrio MB, Grilló MJ, Muñoz PM, Jacques I, González D, de Miguel, MJ, Gorvel J-P (2009) Rough mutants defective in core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infection of sheep. Vaccine 27(11):1741–1749

    Article  CAS  PubMed  Google Scholar 

  • Billard E, Dornand J, Gross A (2007) Brucella suis prevents human dendritic cell maturation and antigen presentation through regulation of tumor necrosis factor alpha secretion. Infect Immun 75(10):4980–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco JM (1997) A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med 31(3):275–283

    Article  CAS  PubMed  Google Scholar 

  • Boigegrain R-A, Salhi I, Alvarez-Martinez, M-T, Machold J, Fedon Y, Arpagaus M, Rouot B (2004) Release of periplasmic proteins of Brucella suis upon acidic shock involves the outer membrane protein Omp25. Infect Immun 72(10):5693–5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boschiroli ML, Foulongne V, O’Callaghan D (2001) Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 4(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Bowden RA, Cloeckaert A, Zygmunt MS, Bernard S, Dubray G (1995) Surface exposure of outer membrane protein and lipopolysaccharide epitopes in Brucella species studied by enzyme-linked immunosorbent assay and flow cytometry. Infect Immun 63(10):3945–3952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden RA, Estein SM, Zygmunt MS, Dubray G, Cloeckaert A (2000) Identification of protective outer membrane antigens of Brucella ovis by passive immunization of mice with monoclonal antibodies. Microbes Infect 2(5):481–488

    Article  CAS  PubMed  Google Scholar 

  • Caro-Hernández P, Fernández-Lago L, de Miguel M-J, Martín-Martín AI, Cloeckaert A, Grilló M-J, Vizcaíno N (2007) Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect Immun 75(8):4050–4061

    Article  PubMed  PubMed Central  Google Scholar 

  • Celli J (2006) Surviving inside a macrophage: the many ways of Brucella. Res Microbiol 157(2):93–98

    Article  CAS  PubMed  Google Scholar 

  • Cloeckaert A, Jacques I, Bosseray N, Limet JN, Bowden R, Dubray G, Plommet M (1991) Protection conferred on mice by monoclonal antibodies directed against outer-membrane-protein antigens of Brucella. J Med Microbiol 34(3):175–180

    Article  CAS  PubMed  Google Scholar 

  • Corbeil LB, Blau K, Inzana TJ, Nielsen KH, Jacobson RH, Corbeil RR, Winter AJ (1988) Killing of Brucella abortus by bovine serum. Infect Immun 56(12):3251–3261

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Tejada MG, Moriyon I (1993) The outer membranes of Brucella spp. are not barriers to hydrophobic permeants. J Bacteriol 175(16):5273–5275

    Article  Google Scholar 

  • de Bagüés MP, Marin CM, Blasco JM, Moriyon I, Gamazo C (1992) An ELISA with Brucella lipopolysaccharide antigen for the diagnosis of B. melitensis infection in sheep and for the evaluation of serological responses following subcutaneous or conjunctival B. melitensis strain Rev 1 vaccination. Vet Microbiol 30(2):233–241

    Article  Google Scholar 

  • De Tejada MG, Pizarro-Cerda J, Moreno E, Moriyon I (1995) The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides. Infect Immun 63(8):3054–3061

    Google Scholar 

  • Edmonds MD, Cloeckaert A, Booth NJ, Fulton WT, Hagius SD, Walker JV, Elzer PH (2001) Attenuation of a Brucella abortus mutant lacking a major 25 kDa outer membrane protein in cattle. Am J Vet Res 62(9):1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Edmonds MD, Cloeckaert A, Elzer PH (2002a) Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet Microbiol 88(3):205–221

    Article  CAS  PubMed  Google Scholar 

  • Edmonds MD, Cloeckaert A, Hagius SD, Samartino LE, Fulton WT (2002b) Pathogenicity and 21 protective activity in pregnant goats of a Brucella melitensis Deltaomp25 deletion 22 mutant. Res Vet Sci 72:235–239

    Article  CAS  PubMed  Google Scholar 

  • Eisenschenk FC, Houle JJ, Hoffmann EM (1999) Mechanism of serum resistance among Brucella abortus isolates. Vet Microbiol 68(3):235–244

    Article  CAS  PubMed  Google Scholar 

  • Estein SM, Cheves PC, Fiorentino MA, Cassataro J, Paolicchi FA, Bowden RA (2004) Immunogenicity of recombinant Omp31 from Brucella melitensis in rams and serum bactericidal activity against B. ovis. Vet Microbiol 102(3):203–213

    Article  CAS  PubMed  Google Scholar 

  • Garin-Bastuji B, Blasco JM, Grayon M, Verger JM (1997) Brucella melitensis infection in sheep: present and future. Vet Res 29(3–4):255–274

    Google Scholar 

  • Groisman EA (1994) How bacteria resist killing by host-defense peptides. Trends Microbiol 2(11):444–449

    Article  CAS  PubMed  Google Scholar 

  • Jubier-Maurin V, Boigegrain R-A, Cloeckaert A, Gross A, Alvarez-Martinez M-T, Terraza A, Dornand J (2001) Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor alpha production during infection of human macrophages. Infect Immun 69(8):4823–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11(1):105–128

    Article  CAS  PubMed  Google Scholar 

  • Martín-Martín AI, Caro-Hernández P, Orduña A, Vizcaíno N, Fernández-Lago L (2008) Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect 10(6):706–710

    Article  PubMed  Google Scholar 

  • Martín-Martín AI, Sancho P, Tejedor, C, Fernández-Lago L, Vizcaíno N (2011) Differences in the outer membrane-related properties of the six classical Brucella species. Vet J 189(1):103–105

    Article  PubMed  Google Scholar 

  • Moreno E, Cloeckaert A, Moriyón I (2002) Brucella evolution and taxonomy. Vet Microbiol 90(1):209–227

    Article  CAS  PubMed  Google Scholar 

  • Pizarro-Cerdá J, Moreno E, Gorvel J-P (2000) Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells. Microbes Infect 2(7):829–835

    Article  PubMed  Google Scholar 

  • Salhi I, Boigegrain R-A, Machold J, Weise C, Cloeckaert A, Rouot B (2003) Characterization of new members of the group 3 outer membrane protein family of Brucella spp. Infect Immun 71(8):4326–4332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz HC, Nöckler K, Göllner C, Bahn P, Vergnaud G, Tomaso H, Maquart M (2010) Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 60(4):801–808

    Article  CAS  PubMed  Google Scholar 

  • Schurig GG, Sriranganathan N, Corbel MJ (2002) Brucellosis vaccines: past, present and future. Vet Microbiol 90(1):479–496

    Article  CAS  PubMed  Google Scholar 

  • Slack MP, Wheldon DB (1978) A simple and safe volumetric alternative to the method of Miles, Misra and Irwin for counting viable bacteria. J Med Microbiol 11(4):541–545

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno N, Kittelberger R, Cloeckaert A, Marín CM, Fernández-Lago L (2001) Minor nucleotide substitutions in the omp31 gene of Brucella ovis result in antigenic differences in the major outer membrane protein that it encodes compared to those of the other Brucella Species. Infect Immun 69(11):7020–7028

    Article  PubMed  PubMed Central  Google Scholar 

  • Vizcaíno N, Caro-Hernández P, Cloeckaert A, Fernández-Lago L (2004) DNA polymorphism in the omp25/omp31 family of Brucella spp.: identification of a 1.7-kb inversion in Brucella cetaceae and of a 15.1-kb genomic island, absent from Brucella ovis, related to the synthesis of smooth lipopolysaccharide. Microbes Infect 6(9):821–834

    Article  PubMed  Google Scholar 

  • Wang Z, Wu Q (2013) Research progress in live attenuated Brucella vaccine development. Curr Pharm Biotechnol 14(10):887–896

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW (2013) Progress in Brucella vaccine development. Front Biol 8(1):60–77

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by PAPIIT IN212610, PAPIIT IN-221513, and PAPIIT IN-222516, UNAM. The authors acknowledge Beatriz Arellano for her technical support and Mrs. Francisca Muñoz for her administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Verdugo-Rodríguez.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdiguel-Fernández, L., Oropeza-Navarro, R., Basurto-Alcántara, F.J. et al. Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch Microbiol 199, 971–978 (2017). https://doi.org/10.1007/s00203-017-1360-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1360-7

Keywords

Navigation