Skip to main content
Log in

Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription–qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29(1):54–66 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Dan T, Fukuda K, Sugai-Bannai M, Takakuwa N, Motoshima H, Urashima T (2009) Characterization and expression analysis of the exopolysaccharide gene cluster in Lactobacillus fermentum TDS030603. Biosci Biotechnol Biochem 73(12):2656–2664

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 73(2):245–259 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Hueck CJ, Hillen W, Saier MH (1994) Analysis of a cis-active sequence mediating catabolite repression in Gram positive bacteria. Res Microbiol 145:503–518

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192(12):1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, KleinLankhorst RM, Bron PA, Hoffer SM, Nierop Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci 100:1990–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SC (2009) Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the Priming glycosyltransferase. Appl Environ Microbiol 75(11):3554–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JY, Jin MM, Meng J, Gao SM, Lu RR (2013) Exopolysaccharide from Lactobacillus plantarum LP6: antioxidation and the effect on oxidative stress. Carbohydr Polym 98(1):1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM (2011) Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric 91(12):2284–2291

    CAS  PubMed  Google Scholar 

  • Marciniak BC, Pabijaniak M, de Jong A, Dűhring R, Seidel G, Hillen W, Kuipers OP (2012) High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis. BMC Genom 13:401

    Article  CAS  Google Scholar 

  • Mazzeo MF, Cacace G, Peluso A, Zotta T, Muscariello L, Vastano V, Parente E, Siciliano RA (2012) Effect of inactivation of ccpA and aerobic growth in Lactobacillus plantarum: a proteomic perspective. J Proteomics 75(13):4050–4061

    Article  CAS  PubMed  Google Scholar 

  • McCracken A, Turner MS, Giffard P, Hafner LM, Timms P (2000) Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173:383–389 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Muscariello L, Marasco R, De Felice M, Sacco M (2001) The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67(7):2903–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscariello L, Marino C, Capri U, Vastano V, Marasco R, Sacco M (2013) CcpA and three newly identified proteins are involved in biofilm development in Lactobacillus plantarum. J Basic Microbiol 53(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Péant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D (2005) Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology 151(Pt 6):1839–1851

    Article  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus DM, van Kranenburg R, van Swam II, Taverne N, Bongers RS, Wels M, Wells JM, Bron PA, Kleerebezem M (2012) Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb Cell Fact 11:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar N, Gueimonde M, De Los Reyes-Gavilán CG, Ruas-Madiedo P (2015) Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2013.770728

    PubMed  Google Scholar 

  • Suzuki C, Kobayashi M, Kimoto-Nira H (2013) Novel exopolysaccharides produced by Lactococcus lactis subsp. lactis, and the diversity of epsE genes in the exopolysaccharide biosynthesis gene clusters. Biosci Biotechnol Biochem 77(10):2013–2018

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li W, Rui X, Chen X, Jiang M, Dong M (2014a) Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol 63:133–139

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li W, Rui X, Chen X, Jiang M, Dong M (2014b) Structural characterization and bioactivity of released exopolysaccharides from Lactobacillus plantarum 70810. Int J Biol Macromol 67:71–78

    Article  PubMed  Google Scholar 

  • Zotta T, Ricciardi A, Guidone A, Sacco M, Muscariello L, Mazzeo MF, Cacace G, Parente E (2012) Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1. Int J Food Microbiol 155:51–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of POR Campania, Misura 2014 (2010–2015) AGRIGENET—Network per la salvaguardia e la gestione delle risorse genetiche agroalimentari campane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Muscariello.

Additional information

Communicated by Pierre Béguin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vastano, V., Perrone, F., Marasco, R. et al. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum . Arch Microbiol 198, 295–300 (2016). https://doi.org/10.1007/s00203-015-1169-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1169-1

Keywords

Navigation