Aloush V, Navon-Senezia S, Seigman-Igra Y, Cabili Y, Carmeli Y (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50:43–48. doi:10.1128/AAC.50.1.43-48.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Alvarez-Lerma F, Maull E, Terradas R, Sequra C, Planells I, Coll P et al (2008) Moisturizing body milk as a reservoir of Burkholderia cepacia: outbreak of nosocomial infection in a multidisciplinary intensive care unit. Crit Care 12:R10. doi:10.1186/cc6778
Article
PubMed Central
PubMed
Google Scholar
Bassett DC, Stokes KJ, Thomas WR (1970) Wound infection with Pseudomonas multivorans: a water-borne contaminant of disinfectant solutions. Lancet 1:1188–1191. doi:10.1016/S0140-6736(70)91783-6
Article
CAS
PubMed
Google Scholar
Carmeli Y, Troillet N, Karchmer AW, Samore MH (1999) Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch Intern Med 159:1127–1132. doi:10.1001/archinte.159.10.1127
Article
CAS
PubMed
Google Scholar
Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681. doi:10.1124/pr.58.3.10
Article
CAS
PubMed
Google Scholar
Compant S, Nowak J, Coenye T, Clement C, Barka EA (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626. doi:10.1111/j.1574-6976.2008.00113.x
Article
CAS
PubMed
Google Scholar
Cooper RA, Wigley P, Burton NF (2000) Susceptibility of multiresistant strains of Burkholderia cepacia to honey. Lett Appl Microbiol 31:20–24. doi:10.1046/j.1472-765x.2000.00756.x
Article
CAS
PubMed
Google Scholar
Cooper RA, Halas E, Molan PC (2002) The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil 23:366–370. doi:10.1097/01.BCR.0000036453.98917.41
Article
CAS
PubMed
Google Scholar
Cooper RA, Jenkins L, Henriques AF, Duggan RS, Burton NF (2010) Absence of bacterial resistance to medical-grade manuka honey. Eur J Clin Microbiol Infect Dis 29:1237–1241. doi:10.1007/s10096-010-0992-1
Article
CAS
PubMed
Google Scholar
Cooper RA, Jenkins L, Hooper S (2014) Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. J Wound Care 23:93–104
Article
CAS
PubMed
Google Scholar
Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M et al (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:248–350. doi:10.1038/nchembio.559
Article
Google Scholar
Garo E, Eldridge GR, Goering MG, DeLancey PE, Hamilton MA, Costerton JW et al (2007) Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother 51:1813–1817. doi:10.1128/AAC.01037-06
Article
PubMed Central
CAS
PubMed
Google Scholar
Hancock REW (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 27:S93–S99. doi:10.1086/514909
Article
CAS
PubMed
Google Scholar
Heo ST, Kim SJ, Jeong YG, Bae I, Jin JS, Lee JC (2008) Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haemotalogical malignancy patients with indwelling catheters. J Hosp Infect 7:241–245. doi:10.1016/j.jhin.2008.07.019
Article
Google Scholar
Hofmann H (2012) New developments in inhaled antibiotics for the treatment of Pseudomonas aeruginosa. Curr Pharm Des 18:683–695. doi:10.2174/138161212799315975
Article
CAS
PubMed
Google Scholar
Jenkins R, Cooper R (2010) Synergy between oxacillin and manuka honey sensitises methicillin-resistant Staphylococcus aureus to oxacillin. J Antimicrob Chem 76:1405–1407. doi:10.1093/jac/dks071
Google Scholar
Jenkins R, Cooper RA (2012) Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS One 7:e45600. doi:10.1371/journal.pone.0045600
Article
PubMed Central
CAS
PubMed
Google Scholar
Linares JF, Gustaffsson I, Baquero F, Martinez J (2006) Antibiotics as intermicrobial signalling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489
Article
PubMed Central
CAS
PubMed
Google Scholar
Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060. doi:10.1016/S1286-4579(00)01259-4
Article
CAS
PubMed
Google Scholar
Maddocks SE, Jenkins RE, Rowlands RS, Purdy KJ, Cooper RA (2013) Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro. Future Microbiol 8:1523–1536. doi:10.2217/fmb.13.126
Article
CAS
PubMed
Google Scholar
Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. doi:10.1016/S0966-842X(00)01913-2
Article
CAS
PubMed
Google Scholar
Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. doi:10.1038/nrmicro1085
Article
CAS
PubMed
Google Scholar
McCaughey G, Gilpin D, Elborn J, Tunney MM (2013) The future of antimicrobial therapy in the era of antibiotic resistance in cystic fibrosis pulmonary infection. Expert Rev Respir Med 7:385–396. doi:10.1586/17476348.2013.814411
Article
CAS
PubMed
Google Scholar
Muller G, Alber DG, Turnbull L, Schlothauer RC, Carter DA, Whitchurch CB et al (2013) Synergism between Medihoney and rifampicin against methicillin-resistant Staphylococcus aureus (MRSA). PLoS One 8(2):e57679. doi:10.1371/journal.pone.0057679
Article
PubMed Central
CAS
PubMed
Google Scholar
Nicas TI, Hancock REW (1983) Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. J Bacteriol 153:281–285
PubMed Central
CAS
PubMed
Google Scholar
Odds F (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1. doi:10.1093/jac/dkg301
Article
CAS
PubMed
Google Scholar
Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ et al (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111. doi:10.1099/ijs.0.001123-0
Article
CAS
PubMed
Google Scholar
Vermis K, Vandamme PAR, Nelis HJ (2003) Burkholderia cepacia complex genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media. J Appl Microbiol 95:1191–1199. doi:10.1046/j.1365-2672.2003.02054.x
Article
CAS
PubMed
Google Scholar
Wilkinson SG, Pitt TL (1995) Burkholderia (Pseudomonas) cepacia: pathogenicity and resistance. Rev Med Microbiol 6:10–17
Article
Google Scholar
Wu YL, Scott EM, Po ALW, Tariq N (2009) Development of resistance and cross-resistance in Pseudomonas aeruginosa exposed to subinhibitory antibiotic concentrations. APMIS 107:585–592. doi:10.1111/j.1699-0463.1999.tb01596.x
Article
Google Scholar