Skip to main content

Advertisement

Log in

Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chitosan, a versatile derivative of chitin, is widely used as an antimicrobial agent either alone or mixed with other natural polymers. Burkholderia cenocepacia is a multidrug-resistant bacteria and difficult to eradicate. Our previous studies shown that chitosan had strong antibacterial activity against B. cenocepacia. In the current study, we have investigated the molecular aspects for the susceptibility of B. cenocepacia in response to chitosan antibacterial activity. We have conducted RNA expression analysis of drug efflux system by RT-PCR, membrane protein profiling by SDS–PAGE, and by LC-MS/MS analysis following the validation of selected membrane proteins by real-time PCR analysis. By RT-PCR analysis, it was found that orf3, orf9, and orf13 were expressed at detectable levels, which were similar to control, while rest of the orf did not express. Moreover, shotgun proteomics analysis revealed 21 proteins in chitosan-treated cells and 16 proteins in control. Among them 4 proteins were detected as shared proteins under control and chitosan-treated cells and 17 proteins as uniquely identified proteins under chitosan-treated cells. Among the catalog of uniquely identified proteins, there were proteins involved in electron transport chain and ATP synthase, metabolism of carbohydrates and adaptation to atypical conditions proteins which indicate that utilization and pattern of chitosan is diverse which might be responsible for its antibacterial effects on bacteria. Moreover, our results showed that RND drug efflux system, which display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents, was not determined to play its role in response to chitosan. It might be lipopolysaccharides interaction with chitosan resulted in the destabilization of membrane protein to membrane lyses to cell death. Membrane proteome analysis were also validated by RT-qPCR analysis, which corroborated our results that of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan CR, Hardwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3:285–287

    Article  CAS  Google Scholar 

  • Bazzini S, Udine C, Sass A, Pasca MR, Longo F, Emiliani G, Fondi M, Perrin E, Decorosi F, Viti C, Giovannetti L, Leoni L, Fani R, Riccardi G, Mahenthiralingam E, Buroni S (2011) Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS One 6(4):e18902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Small DA, Toghrol F, Bentley WE (2006) Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J Bacteriol 188:1648–1659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CZS, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Dina Raafat, Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbial 12:3764–3773

    Google Scholar 

  • Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253

    Article  CAS  Google Scholar 

  • Eaton P, Fernandes JC, Pereira E, Pintado ME, Xavier Malcata F (2008) Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108:1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Lou MM, Li B, Xie GL, Wang F, Zhang LX, Luo YC (2010) Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World J Microbiol Biotechnol 26:443–450

    Article  CAS  Google Scholar 

  • Farag RK, Mohamed RR (2012) Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules 18:190–203

    Article  PubMed  Google Scholar 

  • Franklin TJ, Snow GA (1981) Biochemistry of antimicrobial action, 3rd edn. Chapman and Hall, London, p 175

    Google Scholar 

  • Fuchs S, Pané-Farré J, Kohler C, Hecker M, Engelmann S (2007) Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 189:4275–4289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaffer HE, Gouda M, Abdel-Latif E (2013) Antibacterial activity of cotton fabrics treated with sulfadimidine azo dye/chitosan colloid. J Ind Text 42:392–399

    Article  Google Scholar 

  • Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P, Manina G, Riccardi G (2006) Effluc Pump genes of resistance nodulation divisions family in Burkholderia cenocepacia genome. BMC Microbiol 6:66

    Article  PubMed Central  PubMed  Google Scholar 

  • Hofhaus G, Weiss H, Leonard K (1991) Electron microscopic analysis of the peripheral and the membrane parts of mitochondrial NADH dehydrogenase (Complex I). J Mol Biol 221:1027–1043

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Tang QM, Shi Yu, Almoneafy AW, Fang Y, Xu LH, Li W, Li B, Xie GL (2012) Diversity of potential pathogenicity and biofilm formation among Burkholderia cepacia complex water clinical and agricultural isolates in China. World J Microbiol Biotechnol 528:2113–2121

    Article  Google Scholar 

  • Jagannadham MV, Chowdhury C (2012) Differential expression of membrane proteins helps Antarctic Pseudomonas syringae to acclimatize upon temperature variations. J Proteomics 75:2488–2499

    Article  CAS  PubMed  Google Scholar 

  • Kohler C, von Eiff C, Peters G, Proctor RA, Hecker M, Engelmann S (2003) Physiological characterization of a heme-deficient mutant of Staphylococcus aureus by a proteomic approach. J Bacteriol 185:6928–6937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong M, Chen XG, Liu CS, Liu CG, Meng XH, le Yu J (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf B Biointerfaces 65:197–202

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Li B, Wang X, Chen RX, Huangfu WG, Xie GL (2008) Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Eurphorbia pulcherrima. Carbohydr Polym 72:287–292

    Article  CAS  Google Scholar 

  • Lou MM, Zho B, Ibrahim M, Xie GL (2011) Antibacterial activity and mechanism of chitosan solutions against aprocot fruit rot pathogen. Carbohydr. Res 346: 1296–1301

    Article  Google Scholar 

  • Mohamed RR, Seoudi RS, Sabaa MW (2012) Synthesis and characterization of antibacterial semi-interpenetrating carboxymethyl chitosan/poly (acrylonitrile) hydrogels. Cellulose 19:947–958

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8:292–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muzzarelli RAA, Boudrant J, Meyer D, Manno N, DeMarchis M, Paoletti MG (2012) Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87:995–1012

    Article  CAS  Google Scholar 

  • Nikaido H (1996) Outer membrane. In: Neidhardt FC, Curtiss R, Ingraham JL, Brooks Low K, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (Eds.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology (2nd ed.) (Vol. 1, pp. 29–47). edition. Washington DC: American Society for Microbiology

  • Nikaido H, Takatsuka Y (2009) Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta Protein Proteomics 1794:769–781

    Article  CAS  Google Scholar 

  • No HK, Meyers SPJ (1995) Aquat Food Prod Technol 4:27–52

    Google Scholar 

  • Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential: a critical literature survey. Microb Biotechnol 2:184–219

    Article  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Biomacromolecules 4:1457–1465

    Google Scholar 

  • Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F et al (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8:217–225

    CAS  PubMed  Google Scholar 

  • Sajomsang W, Tantayanon S, Tangpasuthadol V, Daly WH (2007) Synthesis of methylated chitosan containing aromatic moieties: chemoselectivity and effect on molecular weight. Carbohydr Polym 72:740–750

    Article  Google Scholar 

  • Shimamoto T, Izawa H, Daimon H, Ishiguro N, Shinagawa M, Sakano Y, Tsuda M, Tsuchiya T (1991) Cloning and nucleotide sequence of the gene (citA) encoding a citrate carrier from Salmonella typhimurium. J Biochem 110:22–28

    CAS  PubMed  Google Scholar 

  • Solov'eva T, Davydova V, Krasikova I, Yermak I (2013) Marine compounds with therapeutics potential in Gram negative species. Mar Drugs 11:2216–2229

    Google Scholar 

  • Takemono K, Sunamoto J, Askasi M (1989) Polymers and medical care. Mita, Tokyo Chapter IV

    Google Scholar 

  • Tanaka I, Appelt K, Dijk J, White SW, Wilson KS (1984) 3-A resolution structure of a protein with histone-like properties in prokaryotes. Nature 310:376–378

    Article  CAS  PubMed  Google Scholar 

  • Tharanathan RN, Kittur FS (2003) Chitin-the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Jansson HB, Lopez-Llorca LV, Salinas J, Gerasimenko DV, Avdienko ID, Varlamov VP (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydr Polym 64:66–72

    Article  CAS  Google Scholar 

  • Yermak IM, Davidova V, Gorbach N, Luk’yanov VIP, Solovèva A, Ulmer TF et al (2006) Forming and immunological properties of some lipopolysaccharide–chitosan complexes. Biochimie 88:23–30

    Article  CAS  PubMed  Google Scholar 

  • Young DH, Kohle H, Kauss H (1982) Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol 70:1449–1454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Special Fund for Agro-scientific Research in the Public Interest (201303015, 201003066) and Zhejiang Provincial Natural Science Foundation of China (LY12C14007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Lin Xie.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, M., Tao, Z., Hussain, A. et al. Deciphering the role of Burkholderia cenocepacia membrane proteins in antimicrobial properties of chitosan. Arch Microbiol 196, 9–16 (2014). https://doi.org/10.1007/s00203-013-0936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0936-0

Keywords

Navigation