Skip to main content
Log in

Extracellular expression of glucose inhibition-resistant Cellulomonas flavigena PN-120 β-glucosidase by a diploid strain of Saccharomyces cerevisiae

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The catalytic fraction of the Cellulomonas flavigena PN-120 oligomeric β-glucosidase (BGLA) was expressed both intra- and extracellularly in a recombinant diploid of Saccharomyces cerevisiae, under limited nutrient conditions. The recombinant enzyme (BGLA15) expressed in the supernatant of a rich medium showed 582 IU/L and 99.4 IU/g dry cell, with p-nitrophenyl-β-d-glucopyranoside as substrate. BGLA15 displayed activity against cello-oligosaccharides with 2–5 glucose monomers, demonstrating that the protein is not specific for cellobiose and that the oligomeric structure is not essential for β-d-1,4-bond hydrolysis. Native β-glucosidase is inhibited almost completely at 160 mM glucose, thus limiting cellobiose hydrolysis. At 200 mM glucose concentration, BGLA15 retained more than 50 % of its maximal activity, and even at 500 mM glucose concentration, more than 30 % of its activity was preserved. Due to these characteristics of BGLA15 activity, recombinant S. cerevisiae is able to utilize cellulosic materials (cello-oligosaccharides) to produce bioethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrera-Islas GA, Ramos-Valdivia AC, Salgado LM, Ponce-Noyola T (2007) Characterization of a β-glucosidase produced by a high-specific growth-rate mutant of Cellulomonas flavigena. Curr Microbiol 54:266–270

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Raphael LR, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotech 18:237–245

    Article  CAS  PubMed  Google Scholar 

  • Benoliel B, Poças-Fonseca MJ, Gonçalves Torres FA, Pepe de Moraes LM (2010) Expression of a glucose-tolerant β-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:2036–2044

    Article  CAS  PubMed  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  PubMed  Google Scholar 

  • Chirico WI, Brown RD Jr (1985) Separation of [1-3H] cellooligosaccharides by thin-layer chromatography assay for cellulolytic enzymes. Anal Biochem 150:264–272

    Article  CAS  PubMed  Google Scholar 

  • Cho KM, Yoo YJ, Kanq HS (1999) δ-integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30

    Article  CAS  Google Scholar 

  • Choi ES, Sohn JH, Rhee SK (1994) Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:587–594

    Article  CAS  PubMed  Google Scholar 

  • Den Haan R, McBride JE, La Grange DC, Lynd LR, Van Zyl W (2007a) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40:1291–1299

    Article  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007b) Hydrolysis and fermentation of amorphous cellulose by recombinant S. cerevisiae. Metab Eng 9:87–94

    Article  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gietz D, Woods RA (2006) Methods in molecular biology. In: Xiao Wei (ed) Yeast protocols, 2nd edn. Human Press Inc, Totowa, New Jersey, pp 107–120

    Google Scholar 

  • Görgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hägendal B (2005) Amino acids supplementation controlled oxygen limitation and sequential double induction improves heterologous xylanase production by P. stipites. FEMS Yeast Res 5:677–683

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl W (2005) Role of cultivation media in the development of yeast strain for large scale industrial use. Microb Cell Fact 4:1–16

    Article  Google Scholar 

  • Henrrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (1989) Cellulase families revealed by hydrophobic cluster-analysis. Gene 81:83–95

    Article  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Fichner BG (2007) Dissecting the catalytic mechanism of a plant β-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohydr Res 342:1613–1623

    Article  CAS  PubMed  Google Scholar 

  • Hrmova M, Streltson AV, Smith JB, Vasella A, Varghese NJ, Fincher BG (2005) Structural rationale for low-nanomolar binding of transition state mimics to a family GH3 β-D-glucan glucohydrolase from barley. Biochemistry 44:16529–16539

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Protorius IS (2002) Microbial cellulase utilization: fundamentals and biotechnology. Microbiol Mol Biol 66:506–577

    Article  CAS  Google Scholar 

  • Njokweni AP, Rose SH, van Zyl WH (2012) Fungal β-glucosidase expression in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Pack SP, Park K, Yoo YJ (2002) Enhancement of β-glucosidase stability and cellobiose-usage using surface engineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnol Lett 24:1919–1925

    Article  CAS  Google Scholar 

  • Penttilä ME, Andre L, Lehtovaara P, Bailey M, Teeri TT, Knowles JK (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103–112

    Article  PubMed  Google Scholar 

  • Ponce-Noyola T, de la Torre M (1995) Isolation of a high-specific-growth-rate mutant of Cellulomonas flavigena on sugar cane bagasse. Appl Microbiol Biotechnol 42:709–712

    Article  CAS  Google Scholar 

  • Ponce-Noyola T, de la Torre M (2001) Regulation of cellulases and xylanases from a derepressed mutant of Cellulomonas flavigena growing on sugar-cane bagasse in continuous culture. Bioresour Technol 78:285–291

    Article  CAS  PubMed  Google Scholar 

  • Pozzo T, Pasten LJ, Karlsson NE, Logan DT (2010) Structural and functional analyses of β-glucosidase 3B Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3. J Mol Biol 397:724–739

    Article  CAS  PubMed  Google Scholar 

  • Sambrook JE, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Sánchez-Torres P, González-Candelas L, Ramón D (1998) Heterologous expression of a Candida molischiana anthocyanin-β-glucosidase in a wine yeast strain. J Agric Food Chem 46:354–360

    Article  PubMed  Google Scholar 

  • Schuster BG, Chinn MS (2012) Consolidated bioprocessing of lignocellulose feedstocks for ethanol fuel production. Bioenerg Res 6:416–435

    Article  Google Scholar 

  • Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99:5099–5103

    Article  CAS  PubMed  Google Scholar 

  • Skory CD, Freer SN, Bothast RJ (1996) Expression and secretion of the Candida wickerhamii extracellular β-glucosidase gene, bglB, in Saccharomyces cerevisiae. Curr Genet 30:417–422

    Article  CAS  PubMed  Google Scholar 

  • Spiridonov NA, Wilson DB (2001) Cloning and biochemical characterization of BGLC, a β-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42:295–301

    CAS  PubMed  Google Scholar 

  • Van Zyl WH, Lynd LR, Den Haan R, Mc Bride JE (2007) Consolidate bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Engin Biotechnol 108:205–235

    Google Scholar 

  • Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–127

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Tanaka T, Ogino C (2010) Gene copy number and polyploid on products formation in yeast. Appl Microbiol Biotechnol 88:849–857

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnol Biofuels 4:1–8

    Article  Google Scholar 

  • Yan T, Lin Y, Lin C (1998) Purification and characterization of an extracellular β-glucosidase II with high hydrolysis and transglucosylation activities from Asperillus niger. J Agric Food Chem 46:431–437

    Article  CAS  PubMed  Google Scholar 

  • Yoshida E, Hidaka M, Foshinobu S, Koyanagi T, Minami H, Tamakis H, Kitaoka M, Katayama T, Kumagi H (2010) Role of a PA14 domain in determining substrate specificity of a glucoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. Biochem J 431:39–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología México (CONACYT) (Grant 104333). D. J. Mendoza-Aguayo received a scholarship number 204305 from CONACYT México. María Isabel Pérez- Montfort corrected the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Ponce-Noyola.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza-Aguayo, D.J., Poggi-Varaldo, H.M., García-Mena, J. et al. Extracellular expression of glucose inhibition-resistant Cellulomonas flavigena PN-120 β-glucosidase by a diploid strain of Saccharomyces cerevisiae . Arch Microbiol 196, 25–33 (2014). https://doi.org/10.1007/s00203-013-0935-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0935-1

Keywords

Navigation