Skip to main content
Log in

The tyrosine recombinase MrpA and its target sequence: a mutational analysis of the recombination site mrpS resulting in a new left element/right element (LE/RE) deletion system

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

MrpA is the multimer resolution protein of the Streptomyces coelicolor A3(2) plasmid SCP2*. Previously, MrpA was found to be a site-specific tyrosine recombinase that acts with the 36-bp recombination site mrpS. The present report gives a comprehensive characterization of the composition as well as the position of the spacer and MrpA binding sites within mrpS. Experiments revealed a spacer consisting of 6 remarkably variable nucleotides in the middle of the mrpS-site. A reduction in the spacer to 5 nucleotides abolished recombination. Investigation of the MrpA binding sites showed the importance of its 15 nucleotides on an effective recombination. Among almost randomly exchangeable nucleotides, two nucleotides were identified as essential for MrpA binding. Alteration of either of these nucleotides led to a reduction in MrpA binding down to 2 % or even to no binding. Based on these results, a new left element/right element (LE/RE) deletion system was developed. The constructed heteromeric mrpS-sites are efficiently resolved by MrpA. The resulting double mutated (LE/RE) site can no longer be used as a recombination site by MrpA. The system has been successfully applied for the generation of multiple-targeted deletions in the genome of E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abremski K, Hoess R (1984) Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem 259:1509–1514

    PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    Article  PubMed  CAS  Google Scholar 

  • Araki K, Okada Y, Araki M, Yamamura K (2010) Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol 10:29

    Article  PubMed  Google Scholar 

  • Baich A, Pierson DJ (1965) Control of proline synthesis in Escherichia coli. Biochim Biophys Acta 104:397–404

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Biswas I (2008) Markerless multiple-gene-deletion system for Streptococcus mutans. Appl Environ Microbiol 74:2037–2042

    Article  PubMed  CAS  Google Scholar 

  • Barre FX, Soballe B, Michel B, Aroyo M, Robertson M, Sherratt D (2001) Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci U S A 98:8189–8195

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Hopwood DA (1981) Genetic studies of the fertility plasmid SCP2 and its SCP2* variants in Streptomyces coelicolor A3(2). J Gen Microbiol 126:427–442

    Google Scholar 

  • Bibb MJ, Freeman RF, Hopwood DA (1977) Physical and genetical characterisation of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Mol Gen Genet 154:155–166

    Article  CAS  Google Scholar 

  • Bibb M, Schottel JL, Cohen SN (1980) A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces. Nature 284:526–531

    Article  PubMed  CAS  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2 μm circle is site-specific. Cell 29:227–234

    Article  PubMed  CAS  Google Scholar 

  • Brown WRA, Lee NCO, Xu Z, Smith MCM (2011) Serine recombinases as tools for genome engineering. Methods 53:372–379

    Article  PubMed  CAS  Google Scholar 

  • Carter Z, Delneri D (2010) New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 27:765–775

    Article  PubMed  CAS  Google Scholar 

  • Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    PubMed  CAS  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175

    Article  PubMed  CAS  Google Scholar 

  • Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41

    Article  PubMed  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Dubeau M-P, Ghinet MG, Jacques P-E, Clermont N, Beaulieu C, Brzezinski R (2009) Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl Environ Microbiol 75:1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Esposito D, Scocca JJ (1997) The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25:3605–3614

    Article  PubMed  CAS  Google Scholar 

  • Fowler AV, Zabin I (1978) Amino acid sequence of beta-galactosidase. XI. Peptide ordering procedures and the complete sequence. J Biol Chem 253:5521–5525

    PubMed  CAS  Google Scholar 

  • Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  PubMed  CAS  Google Scholar 

  • Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  PubMed  CAS  Google Scholar 

  • Ghosh K, Van Duyne GD (2002) Cre-loxP biochemistry. Methods 28:374–383

    Article  PubMed  CAS  Google Scholar 

  • Grainge I, Jayaram M (1999) The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33:449–456

    Article  PubMed  CAS  Google Scholar 

  • Grainge I, Sherratt DJ (2007) Site-specific recombination. In: Aguilera A, Rothstein R (eds) Molecular genetics of recombination. Springer, Berlin, pp 443–463

    Chapter  Google Scholar 

  • Grindley NDF, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  PubMed  CAS  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  • Guo F, Gopaul DN, van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:40–46

    Article  PubMed  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Hartung M, Kisters-Woike B (1998) Cre mutants with altered DNA binding properties. J Biol Chem 273:22884–22891

    Article  PubMed  CAS  Google Scholar 

  • Haug I, Weissenborn A, Brolle D, Bentley S, Kieser T, Altenbuchner J (2003) Streptomyces coelicolor A3(2) plasmid SCP2*: deductions from the complete sequence. Microbiology 149:505–513

    Article  PubMed  CAS  Google Scholar 

  • Hirano N, Muroi T, Takahashi H, Haruki M (2011) Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 92:227–239

    Article  PubMed  CAS  Google Scholar 

  • Hoess R, Abremski K, Irwin S, Kendall M, Mack A (1990) DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol 216:873–882

    Article  PubMed  CAS  Google Scholar 

  • Jeske M, Altenbuchner J (2010) The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Appl Microbiol Biotechnol 85:1923–1933

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Tirumalai R, Landy A, Ellenberger T (1997) Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science 276:126–131

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Jayaram M (1995) Role of partner homology in DNA recombination. Complementary base pairing orients the 5′-hydroxyl for strand joining during Flp site-specific recombination. J Biol Chem 270:4042–4052

    Article  PubMed  CAS  Google Scholar 

  • Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    PubMed  CAS  Google Scholar 

  • Lydiate DJ, Malpartida F, Hopwood DA (1985) The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35:223–235

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Vieira J (1982) A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Mullen CA, Kilstrup M, Blaese RM (1992) Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A 89:33–37

    Article  PubMed  CAS  Google Scholar 

  • Nordstroem K, Austin SJ (1989) Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69

    Article  CAS  Google Scholar 

  • O’Donovan GA, Neuhard J (1970) Pyrimidine metabolism in microorganisms. Bacteriol Rev 34:278–343

    PubMed  Google Scholar 

  • Rajeev L, Malanowska K, Gardner JF (2009) Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73:300–309

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DWDW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sandhu U, Cebula M, Behme S, Riemer P, Wordarczyk C, Metzger D, Reimann J, Schirmbeck R, Hauser H, Wirth D (2011) Strict control of transgene expression in a mouse model for sensitive biological applications based on RMCE compatible ES cells. Nucleic Acids Res 39:1

    Article  Google Scholar 

  • Sauer B (1992) Identification of cryptic lox sites in the yeast genome by selection for Cre-mediated chromosome translocations that confer multiple drug resistance. J Mol Biol 223:911–928

    Article  PubMed  CAS  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    Article  PubMed  CAS  Google Scholar 

  • Schrempf H, Bujard H, Hopwood DA, Goebel W (1975) Isolation of covalently closed circular deoxyribonucleic acid from Streptomyces coelicolor A3(2). J Bacteriol 121:416–421

    PubMed  CAS  Google Scholar 

  • Sheren J, Langer SJ, Leinwand LA (2007) A randomized library approach to identifying functional lox site domains for the Cre recombinase. Nucleic Acids Res 35:5464–5473

    Article  PubMed  CAS  Google Scholar 

  • Sorrell DA, Robinson CJ, Smith J-A, Kolb AF (2010) Recombinase mediated cassette exchange into genomic targets using an adenovirus vector. Nucleic Acids Res 38:123

    Article  Google Scholar 

  • Stark WM, Boocock MR, Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8:432–439

    Article  PubMed  CAS  Google Scholar 

  • Strecker HJ (1957) The interconversion of glutamic acid and proline. I. The formation of Δ1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli. J Biol Chem 225:825–834

    PubMed  CAS  Google Scholar 

  • Subramanya HS, Arciszewska LK, Baker RA, Bird LE, Sherratt DJ, Wigley DB (1997) Crystal structure of the site-specific recombinase, XerD. EMBO J 16:5178–5187

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:871–878

    Article  PubMed  CAS  Google Scholar 

  • Turan S, Kuehle J, Schambach A, Baum C, Bode J (2010) Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. J Mol Biol 402:52–69

    Article  PubMed  CAS  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    Article  PubMed  CAS  Google Scholar 

  • Vogel HJ, Davis BD (1952) Glutamic γ-semialdehyde and Δ1-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J Am Chem Soc 74:109–112

    Article  CAS  Google Scholar 

  • Warth L, Haug I, Altenbuchner J (2011) Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*. Arch Microbiol 193:187–200

    Article  PubMed  CAS  Google Scholar 

  • Watson AT, Garcia V, Bone N, Carr AM, Armstrong J (2008) Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407:63–74

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been completed as part of a PhD thesis at Stuttgart University, Institute of Industrial Genetics (IIG). We would like to thank Prof. Dr. Ralf Mattes for his great and generous support during the past years of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Altenbuchner.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warth, L., Altenbuchner, J. The tyrosine recombinase MrpA and its target sequence: a mutational analysis of the recombination site mrpS resulting in a new left element/right element (LE/RE) deletion system. Arch Microbiol 195, 617–636 (2013). https://doi.org/10.1007/s00203-013-0910-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0910-x

Keywords

Navigation