Skip to main content
Log in

Site-specific recombinases as tools for heterologous gene integration

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Site-specific recombinases are the enzymes that catalyze site-specific recombination between two specific DNA sequences to mediate DNA integration, excision, resolution, or inversion and that play a pivotal role in the life cycles of many microorganisms including bacteria and bacteriophages. These enzymes are classified as tyrosine-type or serine-type recombinases based on whether a tyrosine or serine residue mediates catalysis. All known tyrosine-type recombinases catalyze the formation of a Holliday junction intermediate, whereas the catalytic mechanism of all known serine-type recombinases includes the 180° rotation and rejoining of cleaved substrate DNAs. Both recombinase families are further subdivided into two families; the tyrosine-type recombinases are subdivided by the recombination directionality, and the serine-type recombinases are subdivided by the protein size. Over more than two decades, many different site-specific recombinases have been applied to in vivo genome engineering, and some of them have been used successfully to mediate integration, deletion, or inversion in a wide variety of heterologous genomes, including those from bacteria to higher eukaryotes. Here, we review the recombination mechanisms of the best characterized recombinases in each site-specific recombinase family and recent advances in the application of these recombinases to genomic manipulation, especially manipulations involving site-specific gene integration into heterologous genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abremski K, Gottesman S (1981) Xis-independent excisive recombination of bacteriophage lambda. J Mol Biol 153:67–78

    CAS  PubMed  Google Scholar 

  • Akopian A, He J, Boocock MR, Stark WM (2003) Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci USA 100:8688–8691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    CAS  PubMed  Google Scholar 

  • Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold PH, Blake DG, Grindley NDF, Boocock MR, Stark WM (1999) Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J 18:1407–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin S, Ziese M, Sternberg N (1981) A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736

    CAS  PubMed  Google Scholar 

  • Bibb LA, Hancox MI, Hatfull GF (2005) Integration and excision by the large serine recombinase ϕRv1 integrase. Mol Microbiol 55:1896–1910

    CAS  PubMed  Google Scholar 

  • Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T (2005) A structural basis for allosteric control of DNA recombination by λ integrase. Nature 435:1059–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhassira EE, Westerman K, Leboulch P (1997) Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90:3332–3344

    CAS  PubMed  Google Scholar 

  • Breuner A, Brondsted L, Hammer K (1999) Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. J Bacteriol 181:7291–7297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broach JR, Guarascio VR, Jayaram M (1982) Recombination within the yeast plasmid 2 μ circle is site-specific. Cell 29:227–234

    CAS  PubMed  Google Scholar 

  • Brown WR, Lee NC, Xu Z, Smith MC (2011) Serine recombinases as tools for genome engineering. Methods 53:372–379

    CAS  PubMed  Google Scholar 

  • Bushman W, Thompson JF, Vargas L, Landy A (1985) Control of directionality in lambda site-specific recombination. Science 230:906–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell A (1962) Episomes. Adv Genet 11:101–145

    Google Scholar 

  • Campbell A (1992) Chromosomal insertion site for phages and plasmids. J Bacteriol 174:7495–7499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco CD, Ramaswamy KS, Ramasubramanian TS, Golden JW (1994) Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev 8:74–83

    CAS  PubMed  Google Scholar 

  • Christ N, Corona T, Droge P (2002) Site-specific recombination in eukaryotic cells mediated by mutant λ integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments. J Mol Biol 319:305–314

    CAS  PubMed  Google Scholar 

  • Christiansen B, Brondfted L, Vogensen FK, Hammer K (1996) A resolvase-like protein is required for the site-specific integration of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 178:5164–5173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enquist LW, Kikuchi A, Weisberg RA (1979) The role of λ integrase in integration and excision. Cold Spring Harbor Symp Quant Biol 43:1115–1120

    CAS  PubMed  Google Scholar 

  • Ghosh K, Van Duyne GD (2002) Cre-loxP biochemistry. Methods 28:374–383

    CAS  PubMed  Google Scholar 

  • Ghosh P, Wasil LR, Hatfull GF (2006) Control of phage Bxb1 excision by a novel recombination directionality factor. PLos Biol 4:e186

    PubMed  PubMed Central  Google Scholar 

  • Gilbertson L (2003) Cre–lox recombination: Cre-active tools for plant biotechnology. Trends Biotechnol 21:550–555

    CAS  PubMed  Google Scholar 

  • Gordley RM, Gersbach CA, Barbas CF III (2009) Synthesis of programmable integrases. Proc Natl Acad Sci USA 106:5053–5058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    CAS  PubMed  Google Scholar 

  • Harel-Levy G, Goltsman J, Tuby CN, Yagil E, Kolot M (2008) Human genomic site-specific recombination catalyzed by coliphage HK022 integrase. J Biotechnol 134:46–54

    Google Scholar 

  • Heichman KA, Johnson RC (1990) The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 249:511–517

    CAS  PubMed  Google Scholar 

  • Hirano N, Muroi T, Kihara Y, Kobayashi R, Takahashi H, Haruki M (2011) Site-specific recombination system based on actinophage TG1 integrase for gene integration into bacterial genomes. Appl Microbiol Biotechnol 89:1877–1884

    CAS  PubMed  Google Scholar 

  • Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MC (2011) A phage protein that binds ϕC31 integrase to switch its directionality. Mol Microbiol. doi:https://doi.org/10.1111/j.1365-2958

  • Klippel A, Kanaar R, Kahmann R, Cozzarelli NR (1993) Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants. EMBO J 12:1047–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhstoss S, Rao RN (1991) Analysis of the integration function of the streptomycete bacteriophage ϕC31. J Mol Biol 222:897–908

    CAS  PubMed  Google Scholar 

  • Langer SJ, Ghafoori AP, Byrd M, Leinwand L (2002) A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Res 30:3067–3077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley NDF, Steitz TA (2005) Structure of a synaptic γδ resolvase tetramer covalently linked to two cleaved DNAs. Science 309:1210–1215

    CAS  PubMed  Google Scholar 

  • Lieu PT, Machleidt T, Thyagarajan B, Fontes A, Frey E, Fuerstenau-Sharp M, Thompson DV, Swamilingiah GM, Derebail SS, Piper D, Chesnut JD (2009) Generation of site-specific retargeting platform cell lines for drug discovery using phiC31 and R4 integrases. J Biomol Screen 14:1207–1215

    CAS  PubMed  Google Scholar 

  • Loonstra A, Vooijs M, Beverloo HB, Al Allak B, van Drunen E, Kanaar E, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA 98:9209–9214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorbach E, Christ N, Schwikardi M, Droge P (2000) Site-specific recombination in human cells catalyzed by phage λ integrase mutants. J Mol Biol 296:1175–1181

    CAS  PubMed  Google Scholar 

  • Matsuura M, Noguchi T, Yamaguchi D, Aida T, Asayama M, Takahashi H, Shirai M (1996) The sre gene (ORF469) encodes a site-specific recombinase responsible for integration of the R4 phage genome. J Bacteriol 178:3374–3376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olivares EC, Hollis RP, Calos MP (2001) Phage R4 integrase mediates site-specific integration in human cells. Gene 278:167–176

    CAS  PubMed  Google Scholar 

  • Radman-Livaja M, Biswas T, Ellenberger T, Landy A, Aihara H (2006) DNA arms do the legwork to ensure the directionality of λ site-specific recombination. Curr Opin Struct Biol 16:42–50

    CAS  PubMed  Google Scholar 

  • Rice PA, Mouw KW, Montano SP, Boocock MR, Rowland SJ, Stark WM (2010) Orchestrating serine resolvases. Biochem Soc Trans 38:384–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley PA, Smith MC, Younger E, Smith MC (2008) A motif in the C-terminal domain of ϕC31 integrase controls the directionality of recombination. Nucleic Acids Res 36:3879–3891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Samori Y, Kobayashi Y (1990) The cisA cistron of Bacillus subtilis sporulation gene spoIVC encodes a protein homologue to a site-specific recombinase. J Bacteriol 172:1092–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schebelle L, Wolf C, Stribl C, Javaheri T, Schnuetgen F, Ettinger A (2010) Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FIEx gene traps. Nucleic Acids Res 38:e106

    PubMed  PubMed Central  Google Scholar 

  • Silverman M, Simon M (1980) Phase variation: genetic analysis of switching mutants. Cell 19:845–854

    CAS  PubMed  Google Scholar 

  • Smith MCM, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307

    CAS  PubMed  Google Scholar 

  • Smith MCM, Brown WRA, McEwan AR, Rowley PA (2010) Site-specific recombination by ϕC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388–394

    CAS  PubMed  Google Scholar 

  • Suzuki N, Inui M, Yukawa H (2007) Site-directed integration system using a combination of mutant lox sites for Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:871–878

    CAS  PubMed  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage ϕC31 integrase. Mol Cell Biol 21:3926–3934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    CAS  PubMed  Google Scholar 

  • Van de Putte P, Cramer S, Giphart-Gassler M (1980) Invertible DNA determines host specificity of bacteriophage Mu. Nature 286:218–222

    PubMed  Google Scholar 

  • Yamaichi Y, Niki H (2004) migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome. EMBO J 23:221–233

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the 22nd Kato Memorial Bioscience Foundation and, in part, by a Grant-in-Aid for Young Scientists (B) No. 22760612, a grant to promote advanced scientific research, the Matching Fund Subsidy for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Research Grant for 2010 from the College of Engineering, Nihon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, N., Muroi, T., Takahashi, H. et al. Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 92, 227–239 (2011). https://doi.org/10.1007/s00253-011-3519-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3519-5

Keywords

Navigation