Skip to main content
Log in

ABC transporter genes from Streptomyces ghanaensis moenomycin biosynthetic gene cluster: roles in antibiotic production and export

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Streptomyces ghanaensis ATCC14672 produces antibiotic moenomycin A (MmA), which possesses strong antibacterial activity. The genetic control of MmA biosynthesis has been recently elucidated; nevertheless, little is known about the roles of two pairs of genes, moeX5moeP5 and moeD5moeJ5, coding for ATP-dependent transporter systems. Here we report that both gene pairs form transcriptional units actively expressed during MmA production phase. Streptomyces ghanaensis mutants deficient in either (one) or both transporter systems are characterized by a decreased ability to produce moenomycins, and the ΔmoeP5moeX5 mutant exported less moenomycins. However, even the quadruple S. ghanaensis mutant (ΔmoeD5moeJ5 + ΔmoeX5moeP5) remains able to extrude significant amounts of moenomycin. Similar results were observed under conditions of heterologous expression of moe cluster. Transporter genes other than those located in moe cluster are likely to participate in moenomycin efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkhatib Z, Abts A, Mavaro A, Schmitt L, Smits SH (2012) Lantibiotics: how do producers become self-protected. J Biotechnol (epub ahead of print)

  • Blanc V, Salah-Bey K, Folcher M, Thompson CJ (1995) Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin-producing organism, Streptomyces pristinaespiralis. Mol Microbiol 17:989–999

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh L, Fernandez-Moreno MA, Herrema JK, Malpartida F, Hopwood DA, Dijkhuizen L (1996) Production of actinorhodin-related “blue pigments” by Streptomyces coelicolor A3(2). J Bacteriol 178:2238–2244

    PubMed  CAS  Google Scholar 

  • Datsenko K, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Huber PN (1979) Moenomycin and related phosphorus-containing antibiotics. In: Hahn FE (ed) Antibiotics. Springer, New York

    Google Scholar 

  • Jain M, Cox JS (2005) Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in Mycobacterium tuberculosis. PLoS Pathog 1:e2

    Article  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Lee LF, Chen YJ, Kirby R, Chen C, Chen CW (2007) A multidrug efflux system is involved in colony growth in Streptomyces lividans. Microbiology 153:924–934

    Article  PubMed  CAS  Google Scholar 

  • Liras P, Martin JF (2006) Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Int Microbiol 9:9–19

    PubMed  CAS  Google Scholar 

  • Luzhetskyy A, Ostash B, Fedorenko V (2001) Intergeneric conjugation Escherichia coliStreptomyces globisporus 1912 with using of integrative plasmid pSET152 and its derivatives. Rus J Genet 37:340–1347

    Google Scholar 

  • Makitrynskyy R, Rebets Y, Ostash B, Zaburannyi N, Rabyk M, Walker S, Fedorenko V (2010) Genetic factors that influence moenomycin production in streptomycetes. J Ind Microbiol Biotechnol 37:559–566

    Article  PubMed  CAS  Google Scholar 

  • Malla S, Niraula NP, Liou K, Sohng JK (2010) Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res 165:259–267

    Article  PubMed  CAS  Google Scholar 

  • Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293

    Article  PubMed  Google Scholar 

  • Medema MH, Trefzer A, Kovalchuk A et al (2010) The sequence of a 1.8 Mb linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224

    Article  PubMed  Google Scholar 

  • Méndez C, Salas JA (1998) ABC transporters in antibiotic-producing actinomycetes. FEMS Microbiol Lett 158:1–8

    Article  PubMed  Google Scholar 

  • Méndez C, Salas JA (2001) The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 152:341–350

    Article  PubMed  Google Scholar 

  • Menges R, Muth G, Wohlleben W, Stegmann E (2007) The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin. Appl Microbiol Biotechnol 77:125–134

    Article  PubMed  CAS  Google Scholar 

  • Olano C, Rodriguez AM, Mendez C, Salas JA (1995) A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 16:333–343

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Walker S (2010) Moenomycin family antibiotics: chemical synthesis, biosynthesis, biological activity. Nat Prod Rep 27:1594–1617

    Article  PubMed  CAS  Google Scholar 

  • Ostash I, Ostash B, Walker S, Fedorenko V (2007) Proton-dependent transporter gene lndJ confers resistance to landomycin E in Streptomyces globisporus. Rus J Genet 43:852–857

    Article  CAS  Google Scholar 

  • Ostash I, Rebets Yu, Ostash B, Kobylyanskyy A, Walker S, Myronovskyy M, Nakamura T, Walker S, Fedorenko V (2008) An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch Microbiol 190:105–109

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Doud E, Ostash I, Lin C, Fuse S, Perlstein D, Walker S (2009) Complete characterization of the seventeen-step moenomycin biosynthetic pathway. Biochemistry 48:8830–8841

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Doud E, Fedorenko V (2010a) The molecular biology of moenomycins: towards novel antibiotics based on inhibition of bacterial peptidoglycan glycosyltransferases. Biol Chem 391:499–504

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Yan X, Fedorenko V, Bechthold A (2010b) Chemoenzymatic and bioenzymatic synthesis of carbohydrate containing natural products. Top Curr Chem 297:105–148

    Article  PubMed  CAS  Google Scholar 

  • Ostash B, Rebets Yu, Myronovskyy M, Tsypik O, Ostash I, Kulachkovskyy O, Datsuk Y, Nakamura T, Walker S, Fedorenko V (2011) Identification and characterization of Streptomyces globisporus 1912 regulatory gene lndYR that affects sporulation and antibiotic production. Microbiology 157:1240–1249

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New-York

    Google Scholar 

  • Sanchez C, Mendez C, Salas JA (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045

    Article  PubMed  CAS  Google Scholar 

  • Sattler A, Kreuzig F (1975) The diumycin complex. Comparative studies on antibiotics from diumycin- and macarbomycin-fermentations. J Antibiot 28:200–204

    Article  PubMed  CAS  Google Scholar 

  • Sheldon PJ, Mao Y, He M, Sherman DH (1999) Mitomycin resistance in Streptomyces lavendulae includes a novel drug-binding-protein-dependent export system. J Bacteriol 181:2507–2512

    PubMed  CAS  Google Scholar 

  • Sletta H, Borgos SE, Bruheim P et al (2005) Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrob Agents Chemother 49:4576–4583

    Article  PubMed  CAS  Google Scholar 

  • Song E, Malla S, Yang YH, Lee K, Kim EJ, Lee HC, Sohng JK, Oh MK, Kim BG (2011) Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952. J Ind Microbiol Biotechnol 38:1245–1253

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol 3:429–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grant Bg-98F from the Ministry of Education and Science of Ukraine and by NIH grant 2P01AI083214-04 (to S.W.). The usage of Agilent 6,520 Q-TOF spectrophotometer was supported by the Taplin Funds for Discovery Program (P.I.: S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Ostash.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostash, B., Doud, E. & Walker, S. ABC transporter genes from Streptomyces ghanaensis moenomycin biosynthetic gene cluster: roles in antibiotic production and export. Arch Microbiol 194, 915–922 (2012). https://doi.org/10.1007/s00203-012-0827-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0827-9

Keywords

Navigation