Skip to main content
Log in

Relations between phenotypic changes of spores and biofilm production by Bacillus atrophaeus ATCC 9372 growing in solid-state fermentation

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus spp. spores are usually obtained from strains cultivated in artificial media. However, in natural habitats, spores are predominantly formed from bacteria present in highly surface-associated communities of cells. Solid-state fermentation (SSF) is the culture method that best mimetizes the natural environment of many microorganisms that grow attached to the surface of solid particles. This study aims to confirm that sporulation through SSF of Bacillus atrophaeus occurs by biofilm formation and that this model of fermentation promotes important phenotypic changes in the spores. Sporulation on standard agar and by SSF with sand and sugarcane bagasse as support was followed by a comparative study of the formed spores. Growth characteristics, metabolic and enzymatic profiles confirmed that sporulation through SSF occurs by biofilm formation promoting important phenotypic changes. It was possible to demonstrate that spores coat had different structure and the presence of ridges only on SSF spores’ surface. The sporulation conditions did not affect the dry-heat spore resistance. The type of support evaluated also influenced in the phenotypic alterations; however, the used substrates did not cause interference. This work provides novel information about B. atrophaeus response when submitted to different sporulation conditions and proposes a new concept about bacterial biofilm formation by SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626

    Article  PubMed  CAS  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  PubMed  CAS  Google Scholar 

  • Buhr T, McPherson D, Gutting B (2008) Analysis of broth-cultured Bacillus atrophaeus and Bacillus cereus spores. J Appl Microbiol 105:1604–1613

    Article  PubMed  CAS  Google Scholar 

  • Cazemier AE, Wagenaars SFM, Steeg PF (2001) Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. J Appl Microbiol 90:761–777

    Article  PubMed  CAS  Google Scholar 

  • Chada VGR, Sanstad EA, Wang R, Driks A (2003) Morphogenesis of Bacillus spore surfaces. J Bacteriol 185:6255–6261

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • deVries YP, Atmadja RD, Hornstra LM, deVos WM, Abee T (2005) Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in a defined medium. Appl Environ Microbiol 71:3248–3254

    Article  CAS  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microb Mol Biol Rev 63:1–20

    CAS  Google Scholar 

  • Driks A (2002) Maximum shields: the armor plating of the bacterial spore. Trends Microbiol 10:251–254

    Article  PubMed  CAS  Google Scholar 

  • Driks A (2003) The dynamic spore. PNAS 100:3007–3009

    Article  PubMed  CAS  Google Scholar 

  • Eijlander RT, Abee T, Kuipers OP (2011) Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior. Curr Opin Biotechnol 22:180–186

    Article  PubMed  CAS  Google Scholar 

  • Food and Drug Administration–FDA (2007) Guidance for industry and FDA Staff - Biological Indicator (BI) Intended to Monitor Sterilizers used in Heath Care Facilities: remarket Notification [510(k)] Submissions. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071261.htm. Accessed 28 June 2011

  • Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690

    Article  PubMed  CAS  Google Scholar 

  • Fritze D, Pukall R (2001) Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 227as Bacillus atrophaeus. Int J Syst Evol Microbiol 51:35–37

    PubMed  CAS  Google Scholar 

  • Gibbons HS, Broomall SM, McNew LA et al (2011) Genomic Signatures of Strain Selection and Enhancement in Bacillus atrophaeus var. globigii, a Historical Biowarfare Simulant. PLoS One. doi:10.1371/journal.pone.0017836

    Google Scholar 

  • Halfmann H, Denis B, Bibinov N, Wunderlich J, Awakowicz P (2007) Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J Phys D Appl Phy 40:5907

    Article  CAS  Google Scholar 

  • Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  PubMed  Google Scholar 

  • Hornstra LM, Beek AT, Smelt JP, Kallemeijn WW, Brul S (2009) On the origin of heterogeneity in (preservation) resistance of Bacillus spores: input for a ‘systems’ analysis approach of bacterial spore outgrowth. Int J Food Microbiol 134:9–15

    Article  PubMed  Google Scholar 

  • Houry A, Briandet R, Amerych S, Gohar M (2010) Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiol 156:1009–1018

    Article  CAS  Google Scholar 

  • International Standard ISO- 11138–3 (2006) Sterilization of health care products-biological indicators Part 4: biological indicators for dry heat sterilization processes. ISO, Geneva

    Google Scholar 

  • Iwashita K (2002) Recent studies of protein secretion by filamentous fungi. J Biosci Bioeng 94:530–535

    PubMed  CAS  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  PubMed  CAS  Google Scholar 

  • Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M (2005) Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells. Mol Gen Genomics 274:1–12

    Article  CAS  Google Scholar 

  • Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R (2008) Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol 322:1–16

    Article  PubMed  CAS  Google Scholar 

  • Malkin AJ, Plomp M (2011) High-resolution architecture and structural dynamics of microbial and cellular systems: insights from in vitro atomic force microscopy. In: Kalinin SV, Gruverman A (eds) Scanning probe microscopy of functional materials nanoscale imaging and spectroscopy. Springer, New York, pp 39–68

  • Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P (2002) Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 92:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Merritt JH, Kadouri DE, O’Toole GA (2011) Growing and analyzing static biofilms. Curr Protoc Microbiol 22:1B.1.1–1B.1.18. doi: 10.1002/9780471729259.mc01b01s22

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • Oliveira EA, Nogueira NG, Innocentini MD, Pisani R Jr (2010) Microwave inactivation of Bacillus atrophaeus spores in healthcare waste. Waste Manag 30:2327–2335

    Article  PubMed  CAS  Google Scholar 

  • Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  • Patrick JE, Kearns DB (2009) Laboratory strains of Bacillus subtilis does not exhibit swarming motility. J Bacteriol 191:7129–7133

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Guerra N, Torrado-Agrasar A, López-Macias C, Pastrana L (2003) Main characteristics and applications of solid substrate fermentation. EJEAFChe 2:343–350

    Google Scholar 

  • Rose R, Setlow B, Monroe A, Mallozzi M, Driks A, Setlow P (2007) Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. J Appl Microbiol 103:691–699

    Article  PubMed  CAS  Google Scholar 

  • Roth S, Feichtinger J, Hertel C (2010) Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. J Appl Microbiol 108:521–531

    Article  PubMed  CAS  Google Scholar 

  • Sella SRBR, Guizelini BP, Vandenberghe LPS, Medeiros ABP, Soccol CR (2009) Lab-Scale production of Bacillus atrophaeus’ spores by solid state fermentation in different types of bioreactors. Braz Arch Biol Technol 52:159–170

    Article  Google Scholar 

  • Sella SRBR, Guizelini BP, Zanello PH, Vandenberghe LPS, Ribeiro CAO, Minozzo JC, Soccol CR (2011) Development of a low-cost sterilization biological indicator using Bacillus atrophaeus by solid-state fermentation. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3491

    Google Scholar 

  • Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158

    Article  PubMed  CAS  Google Scholar 

  • Stecchini ML, Del Torre M, Sarais I, Saro O, Messina M, Maltini E (1998) Influence of structural properties and kinetic constraints on Bacillus cereus growth. Appl Environ Microbiol 64:1075–1078

    PubMed  CAS  Google Scholar 

  • Stepanovic S, Vukovic D, DakicSavic IB, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  PubMed  CAS  Google Scholar 

  • Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  PubMed  CAS  Google Scholar 

  • Turnberg WL (1996) Biohazardous waste: risk, assessment, policy and management. Wiley-Interscience, New York

    Google Scholar 

  • Veening J-W, Kuipers OP, Brul S, Hellingwerf KJ, Kort R (2006) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol 188:3099

    Article  PubMed  CAS  Google Scholar 

  • Weber DJ, Sickbert-Bennett E, Gergen MF, Rutala WA (2003) Efficacy of selected hand hygiene agents used to remove Bacillus atrophaeus (a surrogate of Bacillus anthracis) from contaminated hands. JAMA 289:1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Chen J, Yu Q, Lin M, Mustapha A, Chen M (2010) Inactivation of Bacillus spores using a low-temperature atmospheric plasma brush. IEEE T Plasma Sci 38:1624–1631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Electron Microscopy Center/UFPR for the use of transmission and scanning electron microscopy facilities and the Parana State Central Laboratory and Lavinea Arend for the VITEK analysis. This research was supported by the Department of Health of the State of Parana, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Regina B. R. Sella.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3615 kb)

Supplementary material 2 (DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sella, S.R.B.R., Guizelini, B.P., Gouvea, P.M. et al. Relations between phenotypic changes of spores and biofilm production by Bacillus atrophaeus ATCC 9372 growing in solid-state fermentation. Arch Microbiol 194, 815–825 (2012). https://doi.org/10.1007/s00203-012-0815-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0815-0

Keywords

Navigation