Skip to main content
Log in

Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and 1H-NMR analyses did not detect KPS in these mutants. RT-PCR experiments indicated that, most probably, the rkpAGHI genes are cotranscribed. Glycine max cultivars (cvs.) Williams and Peking inoculated with mutants SVQ536 and SVQ538 showed reduced nodulation and symptoms of nitrogen starvation. Many pseudonodules were also formed on the American cv. Williams but not on the Asiatic cv. Peking, suggesting that in the determinate nodule-forming S. fredii-soybean symbiosis, bacterial KPS might be involved in determining cultivar-strain specificity. S. fredii HH103 mutants unable to produce KPS or exopolysaccharide (EPS) also showed reduced symbiotic capacity with Glycyrrhiza uralensis, an indeterminate nodule-forming legume. A HH103 exoA-rkpH double mutant unable to produce KPS and EPS was still able to form some nitrogen-fixing nodules on G. uralensis. Thus, here we describe for the first time a Sinorhizobium mutant strain, which produces neither KPS nor EPS is able to induce the formation of functional nodules in an indeterminate nodule-forming legume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker A, Pühler A (1998) Production of exopolysaccharides. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 97–118

    Google Scholar 

  • Becker A, Schimdt M, Jäger W, Pühler A (1995) New gentamicin-resistance and lacZ promote-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162:37–39

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Fraysse N, Sharypova L (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact 18:899–905

    Article  PubMed  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  CAS  Google Scholar 

  • Bliss J, Garon C, Silver R (1996) Polysialic acid export in Escherichia coli K1: the role of KpsT, the ATP-binding component of an ABC transporter, in chain translocation. Glycobiology 6:445–452

    Article  PubMed  CAS  Google Scholar 

  • Buendía-Clavería AM, Chamber M, Ruiz-Sainz JE (1989) A comparative study of the physiological characteristics, plasmid content and symbiotic properties of different Rhizobium fredii strains. Syst Appl Microbiol 12:203–209

    Google Scholar 

  • Buendía-Clavería AM, Moussaid A, Ollero FJ, Vinardell JM, Torres A, Moreno J, Gil-Serrano AM, Rodríguez-Carvajal MA, Tejero-Mateo P, Peart JL, Brewin NJ, Ruiz-Sainz JE (2003) A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiology 149:1807–1818

    Article  PubMed  Google Scholar 

  • Chataigné G, Conderc F, Poinsot V (2008) Polysaccharides analysis of sinorhizobial capside by on-line anion exchange chromatography with pulse amperiometric detection and mass spectrometry coupling. J Chromatogr A 1185:241–250

    Article  PubMed  Google Scholar 

  • Collmer A, Bauer DW, He SY, Lindeberg M, Kelemu S, Rodriguez-Palenzuela P, Burr TJ, Chatterjee AK (1991) Pectic enzyme production and bacterial plant pathogenicity. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, pp 65–72

    Google Scholar 

  • Crespo-Rivas JC, Margaret I, Pérez-Montaño F, López-Baena FJ, Vinardell JM, Ollero FJ, Moreno J, Ruiz-Sainz JE, Buendía-Clavería AM (2007) A pyrF auxotrophic mutant of Sinorhizobium fredii HH103 is impaired in its symbiotic interactions with soybean and other legumes. Int Microbiol 10:169–176

    PubMed  CAS  Google Scholar 

  • Crespo-Rivas JC, Margaret I, Hidalgo A, Buendía-Clavería AM, Ollero FJ, López-Baena FJ, Murdoch PS, Rodríguez-Carvajal MA, Soria-Díaz ME, Reguera M, Lloret J, Sumpton DP, Mosely JA, Thomas-Oates JE, van Brussel AAN, Gil-Serrano A, Vinardell JM, Ruiz-Sainz JE (2009) Sinorhizobium fredii HH103 cgs mutants are unable to nodulate determinate- and indeterminate nodule-forming legumes and overproduce an altered EPS. Mol Plant Microbe Interact 22:575–588

    Article  PubMed  CAS  Google Scholar 

  • De Lyra MCCP, López-Baena FJ, Madinabeitia N, Vinardell JM, Espuny MR, Cubo MT, Bellogín RA, Ruiz-Sainz JE, Ollero FJ (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9:125–133

    Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  PubMed  CAS  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Fraysse N, Couderc C, Poinsot V (2003) Surface polysaccharides involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  PubMed  CAS  Google Scholar 

  • Fraysse N, Lindner B, Kaczynski Z, Sharypova L, Holst O, Niehaus K, Poisont V (2005) Sinorhizobium meliloti strain 1021 produces a low-molecular mass capsular polysaccharide that is a homopolymer of 3-deoxy-d-manno-oct-2-ulosonic acid harbouring a phospholipidic anchor. Glycobiology 15:101–108

    Article  PubMed  CAS  Google Scholar 

  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Article  PubMed  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Mol Biol Rev 68:280–300

    Article  CAS  Google Scholar 

  • Gibson KE, Kobayasi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Ann Rev Genet 42:413–441

    Article  PubMed  CAS  Google Scholar 

  • Gil-Serrano AM, Rodríguez-Carvajal MA, Tejero-Mateo P, Espartero JL, Menendez M, Corzo J, Ruiz-Sainz JE, Buendía-Clavería AM (1999) Structural determination of a 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonusolonic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103. Biochem J 342:527–535

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A, Margaret I, Crespo-Rivas JC, Parada M, Murdoch PS, Lopez A, Buendia-Claveria AM, Moreno J, Albareda M, Gil-Serrano AM, Rodriguez-Carvajal MA, Palacios JM, Ruiz-Sainz JE, Vinardell JM (2010) The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial KPS production and for efficient nodulation with soybean but not with Vigna unguiculata. Microbiology 156:3398–3411

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker G (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature 5:619–633

    CAS  Google Scholar 

  • Kannenberg EL, Reuhs BL, Fosberg LS, Carlson RW (1998) Lipopolysaccharide and K-antigens: their structures, biosynthesis and functions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer, Dordrecht, pp 119–154

    Google Scholar 

  • Kinkema M, Scott PT, Gresshoff PM (2006) Legume nodulation: successful symbiosis through short- and long-distance signalling. Funct Plant Biol 33:707–721

    Article  CAS  Google Scholar 

  • Kiss E, Reuhs BL, Kim JS, Kereszt A, Petrovics G, Putnoky P, Dusha I, Carlson RW, Kondorosi A (1997) The rkpGHI and −J genes are involved in capsular polysaccharide production by Rhizobium meliloti. J Bacteriol 179:2132–2140

    PubMed  CAS  Google Scholar 

  • Kiss E, Kereszt A, Barta F, Stephens B, Reuhs BL, Kondorosi A, Putnoky P (2001) The rkp-3 region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure. Mol Plant Microbe Interact 14:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Lamrabet Y, Bellogín RA, Cubo T, Espuny MR, Gil-Serrano A, Krishnan HB, Megías M, Ollero FJ, Pueppke SG, Ruiz-Sainz JE, Spaink HP, Tejero-Mateo P, Thomas-Oates J, Vinardell JM (1999) Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant Microbe Interact 12:207–217

    Article  PubMed  CAS  Google Scholar 

  • Madinabeitia N, Bellogín RA, Buendía-Clavería A, Camacho M, Cubo T, Espuny MR, Gil-Serrano AM, Lyra MCCP, Moussaid A, Ollero FJ, Soria-Díaz ME, Vinardell JM, Zeng J, Ruiz-Sainz JE (2002) Sinorhizobium fredii HH103 has a truncated nolO gene due to a −1 frameshift mutation that is conserved among other geographically distant S. fredii strains. Mol Plant Microbe Interact 15:150–159

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt LW, Krishnan HB, Balatti PA, Pueppke SG (1993) Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol Microbiol 9:17–29

    Article  PubMed  CAS  Google Scholar 

  • Müller MG, Forsberg LS, Keating DH (2009) The rkp-1 cluster is required for secretion of Kdo homopolymeric capsular polysaccharide in Sinorhizobium meliloti strain Rm1021. J Bacteriol 191:6988–7000

    Article  PubMed  Google Scholar 

  • Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ, Gil-Serrano AM, Rodríguez-Carvajal MA, Moreno J, Ruiz-Sainz JE (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajans. Mol Plant Microbe Interact 19:43–52

    Article  PubMed  CAS  Google Scholar 

  • Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  PubMed  CAS  Google Scholar 

  • Petrovics G, Putnoky P, Reuhs B, Kim J, Thorp TA, Noel KD, Carlson RW, Kondorosi A (1993) The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like genes cluster involved in symbiotic nodule development. Mol Microbiol 8:1083–1094

    Article  PubMed  CAS  Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Article  PubMed  CAS  Google Scholar 

  • Reuhs BL, Stephens SB, Kim JS, Glenn J, Pzrytycki J, Ojanen-Reuhs T (1999) Epitope identification for a panel of anti-Rhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids. Appl Environ Microbiol 65:5186–5191

    PubMed  CAS  Google Scholar 

  • Rodríguez-Carvajal MA, Tejero-Mateo P, Espartero JL, Ruiz-Sainz JE, Buendía-Clavería AM, Ollero FJ, Yang SS, Gil-Serrano AM (2001) Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast-growing soya bean-nodulating bacterium isolated from an arid region of China. Biochem J 357:505–511

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  CAS  Google Scholar 

  • Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vivo constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  PubMed  CAS  Google Scholar 

  • Simsek S, Ojanen-Reuhs T, Marie C, Reuhs B (2009) An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM and nodD1-dependent. Carbohydr Res 344:1947–1950

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Oates J, Bereszczak J, Edwards E, Gill A, Noreen S, Zhou JC, Chen MZ, Miao LH, Xie FL, Yang JK, Zhou Q, Yang SS, Li XH, Wang L, Spaink HP, Schlaman HRM, Harteveld M, Díaz CL, van Brussel AAN, Camacho M, Rodríguez-Navarro DN, Santamaría C, Temprano F, Acebes JM, Bellogín RA, Buendía-Clavería AM, Cubo MT, Espuny MR, Gil AM, Gutiérrez R, Hidalgo A, López-Baena FJ, Madinabeitia N, Medina C, Ollero FJ, Vinardell JM, Ruiz-Sainz JE (2003) A catalogue of molecular, physiological and symbiotic properties of soybean-nodulating rhizobial strains from different soybean cropping areas of China. Syst Appl Microbiol 26:453–465

    Article  PubMed  CAS  Google Scholar 

  • Vanderlinde EM, Harrison JJ, Muszynski A, Carlson RW, Turner RJ, Yost CK (2010) Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 71:327–340

    Article  PubMed  CAS  Google Scholar 

  • Vinardell JM, López-Baena FJ, Hidalgo A, Ollero FJ, Bellogín R, Espuny MR, Temprano F, Romero F, Krishnan HB, Pueppke SG, Ruiz-Sainz JE (2004a) The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Arch Microbiol 181:144–154

    Article  PubMed  CAS  Google Scholar 

  • Vinardell JM, Ollero FJ, Hidalgo A, López-Baena FJ, Medina C, Ivanov-Vangelov K, Parada M, Madinabeitia N, Espuny MR, Bellogín RA, Camacho M, Rodríguez-Navarro DN, Soria-Díaz ME, Gil-Serrano AM, Ruiz-Sainz JE (2004b) NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103. Mol Plant Microbe Interact 17:676–685

    Article  PubMed  CAS  Google Scholar 

  • Vincent JM (1970) Appendix III. The modified Fähraeus slide technique. In: Vincent JM (ed) A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford, pp 144–145

    Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Bellogín RA, Buendía-Clavería AM, Camacho M, Chen M, Cubo T, Daza A, Díaz CL, Espuny MR, Gutiérrez R, Harteveld M, Li XH, Lyra MCCP, Madinabeitia N, Medina C, Miao L, Ollero FJ, Olsthoorn MMA, Rodríguez DN, Santamaría C, Schlaman HRM, Spaink HP, Temprano F, Thomas-Oates JE, van Brussel AAN, Vinardell JM, Xie F, Yang J, Zhang HY, Zhen J, Zhou J, Ruiz-Sainz JE (2001) Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J Biotechnol 91:243–255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Abigail López for technical assistance and Piedad del Socorro Murdoch and Anton van Brussel for critical reading of the manuscript. This work was supported by grants BIO2008-05736-C02-02 of the Spanish Ministry of Science and Innovation and P07-CVI-02506 of the Andalusia Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Vinardell.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margaret-Oliver, I., Lei, W., Parada, M. et al. Sinorhizobium fredii HH103 does not strictly require KPS and/or EPS to nodulate Glycyrrhiza uralensis, an indeterminate nodule-forming legume. Arch Microbiol 194, 87–102 (2012). https://doi.org/10.1007/s00203-011-0729-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0729-2

Keywords

Navigation