Skip to main content
Log in

Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

After 700 generations of a short-term evolution experiment with Bacillus subtilis 168, two strains were isolated, the UV-adapted strain MW01 and the UV-unexposed control strain DE69, and chosen for UV-C radiation resistance studies with respect to growth phase. The ancestral strain from the evolution experiment was used as reference for comparative purposes. Cells of the UV-adapted strain showed significant differences in their physiology (growth behavior, doubling time, cell density, and sporulation capacity) and were more resistant to UV in all monitored stages. These findings implicate the evolution to an increased UV radioresistance was not limited to a specific growth phase and led to reduced growth dynamics, compared with those obtained from the ancestral and the control strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O’Brien TC, Shah A, Tierney JT, Tomm LL, O’Gara TM, Goranov AI, Grossman AD, Lovett SM (2005) Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 187:7655–7666

    Article  PubMed  CAS  Google Scholar 

  • Berg JD, Matin A, Roberts PV (1982) Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide. Appl Environ Microbiol 44:814–819

    PubMed  CAS  Google Scholar 

  • Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72:2586–2593

    Article  PubMed  CAS  Google Scholar 

  • Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make then stronger. PLoS Biol 4:e23. doi:10.1371/journal.pbio.0040023

    Article  PubMed  Google Scholar 

  • Bucheli-Witschel M, Bassin C, Egli T (2010) UV-C inactivation in Escherichia coli is affected by growth conditions preceding irradiation, in particular by the specific growth rate. J Appl Microbiol 109:1733–1744

    PubMed  CAS  Google Scholar 

  • Cadet J, Sage E, Douki T (2005) Ultraviolet radiation mediated damage to cellular DNA. Mutat Res 571:3–17

    Article  PubMed  CAS  Google Scholar 

  • Child M, Strike P, Pickup R, Edwards C (2002) Salmonella typhimurium displays cyclical patterns of sensitivity to UV-C killing during prolonged incubation in the stationary phase of growth. FEMS Microbiol Lett 213:81–85

    Article  PubMed  CAS  Google Scholar 

  • Coohill TP, Sagripanti JL (2008) Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochem Photobiol 84:1084–1090

    PubMed  CAS  Google Scholar 

  • Dantur KI, Pizarro RA (2004) Effect of growth phase on the Escherichia coli response to ultraviolet-A radiation: influence of conditioned media, hydrogen peroxide and acetate. J Photochem Photobiol 75:33–39

    Article  CAS  Google Scholar 

  • DeVeaux LC, Müller J, Smith JR, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514

    Article  PubMed  CAS  Google Scholar 

  • Donnellan JE Jr, Setlow RB (1965) Thymine photoproducts but not thymine dimers found in ultraviolet-irradiated bacterial spores. Science 149:308–310

    Article  PubMed  CAS  Google Scholar 

  • Douki T, Setlow B, Setlow P (2005) Effects of the binding of alpha/beta-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochem Photobiol 81:163–169

    Article  PubMed  CAS  Google Scholar 

  • Dowds BCA, Murphy P, McConnell DJ, Devine KM (1987) Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis. J Bacteriol 169:5771–5775

    PubMed  CAS  Google Scholar 

  • Dunn G, Jeffs P, Mann NH, Torgersen DM, Young M (1978) The relationship between DNA replication and the induction of sporulation in Bacillus subtilis. J Gen Microbiol 108:189–195

    CAS  Google Scholar 

  • Finkel SE (2006) Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol 4:113–120

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Nyström T (2006) Conditional and replicative senescence in Escherichia coli. Curr Opin Microbiol 9:612–618

    Article  PubMed  CAS  Google Scholar 

  • Freedman ML, Bruce AK (1971) The relationship of radioresistance to balanced growth-rate in Micrococcus radiodurans. Int J Radiat Biol 19:111–121

    Article  CAS  Google Scholar 

  • Goosen N, Moolenaar GF (2008) Repair of UV damage in bacteria. DNA Repair 7:353–379

    Article  PubMed  CAS  Google Scholar 

  • Grunau JA (1978) The ultraviolet sensitivity of Klebsiella pneumonia as a function of growth rate. FEMS Microbiol Lett 4:47–50

    Article  Google Scholar 

  • Harada K, Uchida A, Kadota H (1984) The synergistic effect of heating and gamma-irradiation on the DNA damage and death of Deinococcus radiodurans. Bull Jpn Soc Sci Fish 50:1577–1582

    Article  Google Scholar 

  • Harris DR, Pollock SV, Wood EA, Goiffon RJ, Klingele AJ, Cabot EL, Schackwitz W, Martin J, Eggington J, Durfee TJ, Middle CM, Norton JE, Popelars MC, Li H, Klugman SA, Hamilton LL, Bane LB, Pennacchio LA, Albert TJ, Perna NT, Cox MM, Battista JR (2009) Directed evolution of ionizing radiation resistance in Escherichia coli. J Bacteriol 191:5240–5252

    Article  PubMed  CAS  Google Scholar 

  • Hastings JW, Holzapfel WH, Niemand JG (1986) Radiation resistance of lactobacilli isolated from radurized meat relative to growth and environment. Appl Environ Microbiol 52:898–901

    PubMed  CAS  Google Scholar 

  • Hauser PM, Errington J (1995) Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. J Bacteriol 177:3923–3931

    PubMed  CAS  Google Scholar 

  • Hecker M, Pané-Farré J, Völker U (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236

    Article  PubMed  CAS  Google Scholar 

  • Hilbert DW, Piggot PJ (2004) Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68:234–262

    Article  PubMed  CAS  Google Scholar 

  • Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. The Geochemical News 100:20–22

    Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915

    Article  PubMed  CAS  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Article  PubMed  CAS  Google Scholar 

  • Kadavy DR, Shaffer JJ, Lott SE, Wolf TA, Bolton CE, Gallimore WH, Martin EL, Nicherson WK, Kokjohn TA (2000) Influence of infected cell growth state on bacteriophage reactivation levels. Appl Environ Microbiol 66:5206–5212

    Article  PubMed  CAS  Google Scholar 

  • Keller LC, Maxcy RB (1984) Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appl Environ Microbiol 47:915–918

    PubMed  CAS  Google Scholar 

  • Kolter R, Siegele DA, Tormo A (1993) The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47:855–874

    Article  PubMed  CAS  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • Lazarova V, Savoys P (2004) Technical and sanitary aspects of wastewater disinfection by UV irradiation for landscape irrigation. Water Sci Technol 50:203–209

    PubMed  CAS  Google Scholar 

  • Lowe DR (1994) Early environments: constraints and opportunities for early evolution. In: Bengston S (ed) Early life on earth. Columbia University Press, New York, pp 24–35

    Google Scholar 

  • Mandelstam J, Higgs SA (1974) Induction of sporulation during synchronized chromosome replication in Bacillus subtilis. J Bacteriol 120:38–42

    PubMed  CAS  Google Scholar 

  • Moeller R, Douki T, Cadet J, Stackebrandt E, Nicholson WL, Rettberg P, Reitz G, Horneck G (2007) UV radiation induced formation of DNA bipyrimidine photoproducts in Bacillus subtilis endospores and their repair during germination. Int Microbiol 10:39–46

    PubMed  CAS  Google Scholar 

  • Moeller R, Setlow P, Reitz G, Nicholson WL (2009) Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol 75:5202–5208

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Douki T, Rettberg P, Reitz G, Cadet J, Nicholson WL, Horneck G (2010) Genomic bipyrimidine nucleotide frequency and microbial reactions to germicidal UV radiation. Arch Microbiol 192:521–529

    Article  PubMed  CAS  Google Scholar 

  • Morton RA, Haynes RH (1969) Changes in ultraviolet sensitivity of Escherichia coli during growth in batch cultures. J Bacteriol 97:1379–1385

    PubMed  CAS  Google Scholar 

  • Nakamura H (1987) Sterilization efficacy of UV irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems. Bull Tokyo Med Dent Univ 34:25–40

    PubMed  CAS  Google Scholar 

  • Navarro Llorens JM, Tormo A, Martínez-García E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34:476–495

    Article  PubMed  Google Scholar 

  • Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 17:243–250

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SC (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacterial endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  Google Scholar 

  • Nyström T, Olsson RM, Kjelleberg S (1992) Survival, stress resistance, and alterations in protein expression in the marine Vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol 58:55–65

    PubMed  Google Scholar 

  • Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P (2001) Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41:757–774

    Article  PubMed  CAS  Google Scholar 

  • Reed RH (1997) Solar inactivation of faecal bacteria in water: the critical role of oxygen. Lett Appl Microbiol 24:276–280

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer P (1969) Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev 33:48–71

    PubMed  CAS  Google Scholar 

  • Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environ Mol Mutagen 38:97–104

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:3514–3525

    Google Scholar 

  • Setlow B, Setlow P (1996) Role of DNA repair in Bacillus subtilis spore resistance. J Bacteriol 178:3486–3495

    PubMed  CAS  Google Scholar 

  • Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236

    Article  PubMed  CAS  Google Scholar 

  • Slieman TA, Nicholson WL (2000) Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl Environ Microbiol 66:199–205

    Article  PubMed  CAS  Google Scholar 

  • Stannard CJ, Abbiss JS, Wood JM (1985) Efficiency of treatments involving UV irradiation for decontaminating packaging board of different surface compositions. J Food Prot 48:786–789

    Google Scholar 

  • Sukhi SS, Shashidhar R, Kumar SA, Bandekar JR (2009) Radiation resistance of Deinococcus radiodurans R1with respect to growth phase. FEMS Microbiol Lett 297:49–53

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell RM, Moss SH, Davies DJG (1972) The variation in UV sensitivity of four K12 strains of Escherichia coli as a function of their stage of growth. Mutat Res 16:1–12

    Article  PubMed  CAS  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archean-Proterozoic Earth. In: Schopf JW (ed) Earth’s earliest biosphere. Princeton University Press, Princeton, pp 160–190

    Google Scholar 

  • Wassmann M, Moeller R, Reitz G, Rettberg P (2010) Adaptation of Bacillus subtilis cells to archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. Astrobiology 10:605–615

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Andrea Schröder and Richard Füsser for their skillful technical assistance during the experiments. These results will be included in the PhD thesis of Marko Wassmann. We thank the anonymous reviewers for their valuable comments and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Moeller.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassmann, M., Moeller, R., Reitz, G. et al. Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment. Arch Microbiol 193, 823–832 (2011). https://doi.org/10.1007/s00203-011-0722-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0722-9

Keywords

Navigation