Skip to main content
Log in

Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A chromium (Cr)-resistant bacterium isolated from soil containing 6,000 mg/kg of Cr was identified based on 16S rRNA gene sequence analysis as Delftia, and designated as JD2. Growth of JD2 was accompanied with reduction of Cr(VI) to Cr(III) in liquid medium initially containing 100 mg/L Cr(VI), the maximum concentration allowing growth. JD2 showed NADH/NADPH-dependent reductase activity associated with the soluble fraction of cells. The results suggest that JD2 might be a good candidate for the treatment of highly Cr(VI)-contaminated water and/or industrial effluents. The isolate produced indole-3-acetic acid in the presence and absence of Cr(VI) and showed free-living nitrogen-fixing activity possibly attributable to a V-nitrogenase. JD2 did not counteract the harmful effect of Cr(VI) during leguminous plant growth and nodulation by rhizobial strains but functioned as a “helper” bacterium to enhance the performance of rhizobial inoculant strains during inoculation of alfalfa and clover (used as model plants to study plant growth-promoting activity) in the absence of Cr(VI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bagnasco P, De La Fuente L, Gualtieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30:1317–1322

    Article  CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    Article  CAS  Google Scholar 

  • Betancourt DA, Loveless TM, Brown JW, Bishop PE (2008) Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microbiol 74:3471–3480

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Article  CAS  Google Scholar 

  • Camargo F, Okeke B, Bento F, Frankenberger W (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  PubMed  Google Scholar 

  • Caravaglia L, Cerdeira S, Vullo D (2010) Chromium (VI) biotransformation by β- and γ- Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes. J Hazard Mater 175:104–110

    Article  Google Scholar 

  • Castro-Sowinski S, Carrera I, Catalán AI, Coll J, Martinez-Drets G (2002) Occurrence, diversity and effectiveness of mid-acid tolerant alfalfa nodulating rhizobia in Uruguay. Symbiosis 32:105–118

    Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon O, Jurkevitch E (2007) Effects of inoculation with plant-growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegradation 59:8–15

    Article  CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Coelho RM, de Vos R, Portilho M, Carneiro N, Marriel IE, Paiva E, Seldin L (2008) Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett 279:15–22

    Article  CAS  PubMed  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano MR, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Döbereiner J (1995) Isolation and identification of aerobic nitrogen fixing bacteria from soil and plants. In: Alef K, Nannipieri P (eds) Methods in soil microbiology and biochemistry. Academic Press, New York, pp 124–134

    Google Scholar 

  • Galibert F, Finan TM, Long SR, Pühler A, Abola P et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti strain 1021. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  Google Scholar 

  • Hammer O, Harper D, Ryan P (2001) PAST: paleontological statistic software package for education and data analysis. Paleontol Electron 4:1–9

    Google Scholar 

  • Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  CAS  PubMed  Google Scholar 

  • Juárez-Jiménez B, Manzanera M, Rodelas B, Martínez-Toledo MV, Gonzalez-López J, Crognale S, Pesciaroli C, Fenice M (2010) Metabolic characterization of a strain (BM90) of Delftia tsuruhatensis showing highly diversified capacity to degrade low molecular weight phenols. Biodegradation 21:475–489

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Morel MA, Ubalde MC, Olivera-Bravo S, Callejas C, Gill PR, Castro-Sowinski S (2009) Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. FEMS Microbiol Lett 291:162–168

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Patil NK, Kundapur R, Shouche YS, Karegoudar TB (2006) Degradation of plasticizer Di-n-butylphathalate by Delftia sp. TBKNP-05. Curr Microbiol 52:369–374

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Díaz MI, Diaz-Perez C, Vargas E, Roveros-Rosas H, Campos-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  Google Scholar 

  • Schwyn B, Neilands B (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group with the description of a new genus, Azospirillim gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria, IBP Handbook no. 15. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Volpin H, Burdman S, Castro-Sowinski S, Kapulnik Y, Okon Y (1996) Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots. Mol Plant Microbe Interact 9:388–394

    CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr B. C. Okeke and Prof. W. T. Frankenberger for providing the Bacillus sp. ES29 strain, PEDECIBA-Uruguay (Programa de Desarrollo de las Ciencias Básicas) for partial financial support and Ecotech Laboratory for performing the atomic absorption analysis. Gas chromatography analysis was performed in the Biochemistry Laboratory, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Uruguay. Dr Valerie Dee revised linguistic aspects of the manuscript. The work of M. Morel was supported by ANII (Agencia Nacional de Investigación e Innovación).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Castro-Sowinski.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, M.A., Ubalde, M.C., Braña, V. et al. Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch Microbiol 193, 63–68 (2011). https://doi.org/10.1007/s00203-010-0632-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0632-2

Keywords

Navigation