Skip to main content
Log in

A new Tunisian strain of Bacillus thuringiensis kurstaki having high insecticidal activity and δ-endotoxin yield

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

BLB1 is a new Bacillus thuringiensis kurstaki strain, isolated from a Tunisian soil sample. Assay of toxicity of BLB1 crystal proteins resulted in an LC50 of 70.32 ng of toxin per mg of flour against third instar Ephestia kuehniella with confidence limits of (31.6–109.04 ng). This LC50 is less than that of the commercial strains HD1 used as a reference. The characterization of this strain by scanning transmission electron microscopy, analysis of its cry genes content by PCR-sequencing, and analysis of its δ-endotoxin patterns demonstrate that it belongs to the same subgroup than HD1, but ruled out the involvement of cry gene content or protoxin activation in the hypertoxicity of this strain. Taking into account the δ-endotoxin/spore ratio for each strain, and by allowing the estimation of the production level per spore, it might be concluded that BLB1 production is the highest, when compared with that of HD1. On the basis of its toxicity, BLB1 could be considered as a strain of great interest and would allow the production of quantities of bioinsecticides at low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bechtel DB, Bulla LA Jr (1976) Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol 127:1472–1481

    PubMed  CAS  Google Scholar 

  • Bobrowski VL, Pscali G, Bodanese-zanetti MH, Fiuza LM (2002) Characterization of two Bacillus thuringiensis isolates from south Brasil and their toxicity against Anticarsia gemmatalis (Lepidoptera: Noctuidae). Biol Control 25:129–135

    Article  CAS  Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez ME, Soberon M, quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    PubMed  CAS  Google Scholar 

  • Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel M (1991) Prediction of insecticidal activity Bacillus thuringiensis strain by polymerase chain reaction product profiles. Appl Environ Microbiol 57:353–356

    Google Scholar 

  • Christeller JT, Laing WA, Markwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Biol 22:735–746

    Article  CAS  Google Scholar 

  • Ferré J, Escriche B, Bel Y, Van Rie J (1995) Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol Lett 132:1–7

    Article  Google Scholar 

  • Geiser M, Schweitzer S, Grimm C (1986) The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kur Hdl gene of subsp Kurstaki HD-1. Gene 48:109–118

    Article  PubMed  CAS  Google Scholar 

  • Ghribi D, Zouari N, Trigui W, Jaoua S (2007) Use of sea water as salts source in starch- and soya bean-based media, for the production of Bacillus thuringiensis bioinsecticides. Process Biochem 42:374–378

    Article  CAS  Google Scholar 

  • Herrel LJ, Anderson GL, Wilson KH (1995) Genetic variability of Bacillus thuringiensis and related species. J Clin. Microbiol 33:1847–1850

    Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  • Ibarra JE, Del Rincón MC, Ordúz S, Noriega D, Benintende G, Monnerat R, Regis L, de Oliveira CMF, Lanz H, Rodriguez MH, Sánchez J, Peña G, Bravo A (2003) Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity. Appl Environ Microbiol 69:5269–5274

    Article  PubMed  CAS  Google Scholar 

  • Jaoua S, Zouari N, Tounsi S, Ellouz R (1996) Study of the δ-endotoxins produced by three recently isolated strains of Bacillus thuringiensis. FEMS Microbiol Lett 145:349–354

    CAS  Google Scholar 

  • Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins. In: Evans PD (ed) Advances in insect physiology, vol 24. Academic Press, London, pp 275–308

    Google Scholar 

  • Lee IH, Je YH, Chang JH (2001) Isolation and characterization of a Bacillus thuringiensis ssp. kurstaki strain toxic to Spodoptera exigua and Culex pipiens. Curr Microbiol 43:284–287

    Article  PubMed  CAS  Google Scholar 

  • Liu PYF, Wu WL (1997) Use of different PCR-based DNA fingerprinting techniques and pulsed-field gel electrophoresis to investigate the epidemiology of Acinetobacter calcoaceticusAcinetobacter baumannii complex. Diagn Microbiol Infect Dis 28:19–28

    Article  Google Scholar 

  • Marchetti S, Chiaba C, Chiesa F, Bandiera A, Pitotti A (1998) Isolation and partial characterization of two trypsins from the larval midgut of Spodoptera littoralis (Boisduval). Insect Biochem Mol Biol 28:449–458

    Article  CAS  Google Scholar 

  • Martínez C, Jorge E, Ibarra C, Primitivo C (2005) Association analysis between serotype, cry gene content, and toxicity to Helicoverpa armigera larvae among Bacillus thuringiensis isolates native to Spain. J Invertebr Pathol 90:91–97

    Article  PubMed  Google Scholar 

  • Masson L, Mazza A, Gringorten L, Baines D, Aneliunas V, Brousseau R (1994) Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol 14:851–860

    Article  PubMed  CAS  Google Scholar 

  • Mohan M, Gujar GT (2002) Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins, and associated resistance development in India. Bull Ent Res 92:489–498

    Article  CAS  Google Scholar 

  • Monnerat RG, Batista AC, Telles de Medeiros P, Martins ES, Melatti VM, Praça LB, Dumas VF, Morinaga C, Demo C, Gomes ACM, Falcão R, Siqueira CB, Silva-Werneck JO, Berry C (2007) Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol Control 41:291–295

    Article  Google Scholar 

  • Pang ASD, Gringorten JL (1998) Degradation of Bacillus thuringiensis delta-endotoxin in host insect gut juice. FEMS Microbiol Lett 167:281–285

    CAS  Google Scholar 

  • Rouis S, Chakroun M, Saadaoui I, Jaoua S (2007) Proteolysis, histopathological effects, and immunohistopathological localization of delta-endotoxins of Bacillus thuringiensis subsp. kurstaki in the midgut of lepidopteran olive tree pathogenic insect Prays oleae. Mol Biotechnol 35:141–148

    Article  PubMed  CAS  Google Scholar 

  • Rouis S, Chakroun M, Jaou S (2008) Comparative study of Bacillus thuringiensis Cry1Aa and Cry1Ac δ-endotoxin activation, inactivation and in situ histopathological effect in Ephestia kuehniella (Lepidoptera: Pyralidae). Mol Biotechnol 38:233–239

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Frisch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schwartz JL, Juteau M, Grochulski P, Cygler M, Préfontaine G, Brousseau R, Masson L (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulphide bond engineering. FEBS Lett 410:397–402

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Cui Y, Liu X, Yi H, Ji J, Yu Z (1998) Processing of δ-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J Invertebr Pathol 72:73–81

    Article  PubMed  CAS  Google Scholar 

  • Shin BS, Park SH, Choi SK, Koo BT, Lee ST, Kim JI (1995) Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. entomocidus. Appl Environ Microbiol 61:2402–2407

    PubMed  CAS  Google Scholar 

  • Theunis W, Aguda RM, Cruz WT, Decock C, Peferoen M, Lambert B, Bottrell DG, Gould FL, Litsinger JA, Cohen MB (1998) Bacillus thuringiensis isolates from the Philippines: habitat distribution, delta-endotoxin diversity, and toxicity to rice stem borers (Lepidoptera: Pyralidae). Bull Entomol Res 88:335–342

    CAS  Google Scholar 

  • Tounsi S, Dammak M, Rebaî A, Jaoua S (2005) Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins and toxin mixtures. Biol Control 35:27–31

    Article  CAS  Google Scholar 

  • Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus species. App Environ Microbiol 53:1263–1266

    Google Scholar 

  • Venables WN, Smith DM (2004) The R. development core team. An introduction to R. version 1.9.1. http://www..r-project.org/

  • Yang XW, Walker MJ, Hornitzky M, Chin J (2006) Development of a group-specific PCR combined with ARDRA for the identification of Bacillus species of environmental significance. J Microbiol Methods 64:107–119

    Article  CAS  Google Scholar 

  • Zouari N, Jaoua S (1999) The effect of complex carbon and nitrogen, salt, Tween-80 and acetate on delta-endotoxin production by a Bacillus thuringiensis subsp. kurstaki. J Ind Microbiol Biotechnol 23:497–502

    Article  CAS  Google Scholar 

  • Zouari N, Dhouib A, Ellouz R, Jaoua S (1998) Nutritional requirement of a strain of Bacillus thuringiensis subsp. Kurstaki and use of gruel hydrolysate, for the formulation of a new medium for delta-endotoxin production. Appl Biochem Biotechnol 69:41–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the “Ministry of Higher Education, Scientific Research and Technology” and the AUF “Agence Universitaire de la Francophonie”. We thank Dr. Patrick Schultz, Institute of Genetics and Molecular and Cellular Biology, for his help in electron microscopy experiments and Pr. Ahmed Rebai, Centre of Biotechnology of Sfax, for his help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Jaoua.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadaoui, I., Rouis, S. & Jaoua, S. A new Tunisian strain of Bacillus thuringiensis kurstaki having high insecticidal activity and δ-endotoxin yield. Arch Microbiol 191, 341–348 (2009). https://doi.org/10.1007/s00203-009-0458-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0458-y

Keywords

Navigation