Skip to main content
Log in

New taxonomic markers for identification of Rhizobium leguminosarum and discrimination between closely related species

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Rhizobia, producing species-specific exopolysaccharides (EPSs), comprise a very diverse group of soil bacteria that are able to establish nitrogen-fixing symbioses with legumes. Based on the sequences of R. leguminosarum EPS synthesis genes, a sensitive and reliable PCR-based method for identification and subsequent discrimination between Rhizobium species has been developed and tested. For identification of R. leguminosarum, primer sets I–III complementary to sequences of rosR, pssA and pssY genes were proposed. Further sets of primers (IV–VII) were designed for discrimination between R. leguminosarum biovars. The usefulness of the method was examined using a wide range of R. leguminosarum strains isolated from different host plants nodules originating from different regions of Poland. We demonstrate a high discriminating power of primer sets I–III that allow distinguishing R. leguminosarum and two closely related species, R. etli and R. gallicum. This new approach is applicable to identification of R. leguminosarum strains, originating from nodules or soil, where many other closely related bacteria are expected to be present. Based on the nucleotide sequence of rosR and pssA genes, phylogenetic relationships of selected R. leguminosarum isolates were determined. Our results indicate that both rosR and pssA might be useful markers to differentiate and define relationships within a group of R. leguminosarum strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EPS:

Exopolysaccharide

ITS:

Intergenic transcription sequence

RFLP:

Restriction fragment length polymorphism

IP:

Isoprenylphosphate

References

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    PubMed  CAS  Google Scholar 

  • Beyhaut E, Tlusty B, van Berkum P, Graham PH (2006) Rhizobium giardinii is the microsymbiont of Illinois bundleflower (Desmanthus illinoensis (Michx.) Macmillan) in midwestern prairies. Can J Microbiol 52:903–907

    Article  PubMed  CAS  Google Scholar 

  • Bittinger MA, Milner JL, Saville BJ, Handelsman J (1997) rosR, a determinant of nodulation competitveness in Rhizobium etli. Mol Plant Microbe Interact 10:180–186

    Article  PubMed  CAS  Google Scholar 

  • Borthakur D, Barker RF, Latchford JW, Rossen L, Johnston AWB (1988) Analysis of pss genes of Rhizobium leguminosarum required for exopolysaccharide synthesis and nodulation of peas: their primary structure and their interaction with psi and other nodulation genes. Mol Gen Genet 213:155–162

    Article  PubMed  CAS  Google Scholar 

  • Bromfield ESP, Wheatcroft R, Barran LR (1994) Medium for direct isolation of Rhizobium meliloti from soil. Soil Biol Biochem 26:423–428

    Article  Google Scholar 

  • Casse F, Boucher C, Julliot JS, Michel M, Denarie J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242

    CAS  Google Scholar 

  • Chakravorty AK, Żurkowski W, Shine J, Rolfe BGJ (1982) Symbiotic nitrogen fixation: molecular cloning of Rhizobium genes involved in exopolysaccharide synthesis and effective nodulation. J Mol Appl Genet 1:585–596

    PubMed  CAS  Google Scholar 

  • Chou AY, Archdeacon J, Kado CI (1998) Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogen ipt. Proc Natl Acad Sci USA 95:5293–5298

    Article  PubMed  CAS  Google Scholar 

  • Deryło M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 154:211–217

    Article  Google Scholar 

  • Eardly BD, Nour SM, van Berkum P, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 13:99–105

    Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    PubMed  CAS  Google Scholar 

  • Geniaux E, Laguerre G, Amarger N (1993) Comparison of geographically distant populations of Rhizobium isolated from root nodules of Phaseolus vulgaris. Mol Ecol 2:295–302

    Article  Google Scholar 

  • Glenn AR, Poole PS, Hudman JF (1980) Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum. J Gen Microbiol 119:267–271

    CAS  Google Scholar 

  • Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839

    Article  PubMed  Google Scholar 

  • Herrera-Cervera JA, Caballero-Mellado J, Tichy Laguerre G, HV Requena N, Amarger N, Martinez-Romero E, Olivares J, Sanjuan J (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30:87–97

    Article  CAS  Google Scholar 

  • Ivashina TV, Khmelnitsky MI, Shlyapnikov MG, Kanapin AA, Ksenzenko VN (1994) The pss4 gene from Rhizobium leguminosarum biovar viciae VF39: cloning, sequence and the possible role in polysaccharide production and nodule formation. Gene 50:111–116

    Article  Google Scholar 

  • Janczarek M, Skorupska A (2003) Exopolysaccharide synthesis in Rhizobium leguminosarum bv. trifolii is related to various metabolic pathways. Res Microbiol 154:433–442

    Article  PubMed  CAS  Google Scholar 

  • Janczarek M, Skorupska A (2007) The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production. Mol Plant Microbe Interact 20:867–881

    Article  PubMed  CAS  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel BB (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380

    Google Scholar 

  • Kalita M, Małek W (2004) Phenotypic and genomic characteristics of rhizobia isolated from Genista tinctoria root nodules. Syst Appl Microbiol 27:707–715

    Article  PubMed  CAS  Google Scholar 

  • Keller M, Roxlau A, Wenig WM, Schmidt M, Quandt J, Niehaus K, Jording D, Arnold W, Pühler A (1995) Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant Microbe Interact 8:267–275

    PubMed  CAS  Google Scholar 

  • Król JE, Mazur A, Marczak M, Skorupska A (2007) Syntenic arrangements of the surface polysaccharide biosynthesis genes in Rhizobium leguminosarum. Genomics 89:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kuykendall LD, Elkan GH (1976) Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilization. Appl Environ Microbiol 32:511–519

    PubMed  CAS  Google Scholar 

  • Laguerre G, Geniaux E, Mazurier I, Rodriguez-Casarteli R, Amarger N (1993) Conformity and diversity among field isolates of Rhizobium leguminosarum bv. viciae, bv. trifolii and bv. phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Can J Microbiol 39:412–419

    Article  CAS  Google Scholar 

  • Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Amarger N (1996) Typing of Rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. App Environ Microbiol 62:2029–2036

    CAS  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiol 147:981–993

    CAS  Google Scholar 

  • Laguerre G, Louvrier P, Allard MR, Amarger N (2003) Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl Environ Microbiol 69:2276–2283

    Article  PubMed  CAS  Google Scholar 

  • Lai EM, Kado CI (1998) Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717

    PubMed  CAS  Google Scholar 

  • Laus MC, Logman TJ, Lamers GE, van Brussel AA, Carlson RW, Kijne JW (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhiobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426

    PubMed  CAS  Google Scholar 

  • Martir MC, Tlusty B, van Berkum P, Graham PH (2007) The genetic diversity of rhizobia associated with Dalea purpurea Vent. In fragmented grasslands of west-central Minnesota. Can J Microbiol 53:351–363

    Article  PubMed  CAS  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martinez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  PubMed  CAS  Google Scholar 

  • Mnasri B, Tajini F, Trabelsi M, Aouani ME, Mhamdi R (2007) Rhizobium gallicum as a an efficient symbiont for bean cultivation. Agron Sustain Dev 27:1–6. doi:10.1051/agro:2007024

    Article  CAS  Google Scholar 

  • Mutch LA, Young JPW (2004) Diversity and specificity of Rhizobium leguminosarum bv. viciae on wild and cultivated legumes. Mol Ecol 13:2435–2444

    Article  PubMed  CAS  Google Scholar 

  • Navarro E, Somonet P, Normand P, Bardin R (1992) Characterization of natural populations of Nitrobacter sp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch Microbiol 157:107–115

    PubMed  CAS  Google Scholar 

  • Noel KD, Sanchez A, Fernandez L, Leemans J, Cevallos MA (1984) Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155

    PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR–RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161:300–309

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro DN, Buendia AM, Camacho M, Lucas MM, Santamaria C (2000) Characterization of Rhizobium spp. bean isolates from south-west Spain. Soil Biol Biochem 32:1601–1613

    Article  CAS  Google Scholar 

  • Rolfe B, Gresshoff P, Shine J (1982) Rapid screening for symbiotic mutants of Rhizobium and white clover. Plant Sci Lett 19:277–284

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanchez-Contreras M, Lloret J, Martin M, Villacieros M, Bonilla I, Rivilla R (2000) PCR use of highly conserved DNA regions for identification of Sinorhizobium meliloti. Appl Environ Microbiol 8:3621–3623

    Article  Google Scholar 

  • Segovia L, Young JPW, Martinez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    PubMed  CAS  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Martinez-Romero E, Souza V (2003) Rhizobium etli and Rhizobum gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications. Appl Environ Microbiol 69:884–893

    Article  PubMed  CAS  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martinez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobum gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14:4033–4050

    Article  PubMed  CAS  Google Scholar 

  • Skorupska A, Białek U, Urbanik-Sypniewska T, van Lammeren A (1995) Two types of nodules induced on Trifolium pratense by mutants of Rhizobium leguminosarum bv. trifolii deficient in exopolysaccharide production. J Plant Physiol 147:93–100

    CAS  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 16:7–26

    Article  CAS  Google Scholar 

  • Stanley J, Dowling DN, Broughton WJ (1988) Cloning of hemA from Rhizobium sp. NGR234 and symbiotic phenotype of a gene-directed mutant in diverse legume genera. Mol Gen Genet 215:32–37

    Article  CAS  Google Scholar 

  • Tamimi SM, Young JPW (2004) Rhizobium etli is the dominant common bean nodulating rhizobia in cultivated soils from different locations in Jordan. Appl Soil Ecol 26:193–200

    Article  Google Scholar 

  • Tlusty B, van Berkum P, Graham PH (2005) Characteristics of the rhizobia assiociated with Dalea spp.in the Ordway, Kellogg-Weaver Dunes, and Hayden prairies. Can J Microbiol 51:15–23

    Article  PubMed  CAS  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velazquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637. doi:10.1099/ijs.0.64402-0

    Article  PubMed  CAS  Google Scholar 

  • Van Berkum P, Beyene D, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244

    Article  PubMed  Google Scholar 

  • van Workum WA, Canter HCJ, Cremers C, Wijfjes AHM, van der Kolk C, Wijffelman CA, Kijne JW (1997) Cloning and characterization of four genes of Rhizobium leguminosarum bv. trifolii involved in exopolysaccharide production and nodulation. Mol Plant Microbe Interact 10:290–301

    Article  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. International biological program handbook no. 15. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Wdowiak S, Małek W (2000) Numerical analysis of Astragalus cicer microsymbionts. Curr Microbiol 2:142–148

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Young JPW, Downer HL, Eardly BD (1991) Phylogeny of the phototropic Rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277

    PubMed  CAS  Google Scholar 

  • Young JP, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Praser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. E. Velazquez for kindly providing the R. lusitanum p1-7T strain (Universidad de Salamanca, Departamento de Microbiologia y Genetica, Edificio Departamental de Biologia, Salamanca, Spain), Dr. Cecile Revellin for providing the R. giardinii bv. giardinii H152T and R. gallicum bv. gallicum R602T strains from collection of the Laboratoire de Microbiologie des Sols, Institut National de la Recherche Agronomique, Dijon, France, Dr. R. Mhamdi (Laboratoire des Interactions Legumineuses-Microorganismes, Centre de Biotechnologie, Hammam-lif, Tunisia) for providing the R. gallicum 8a3 strain and Dr. J. Sanjuan (Grupo Interacciones Planta-Bacteria, Dpto. Microbiologia del Suelo y Sistemas Simbioticos Estacion Experimental del Zaidin, CSIC, Granada, Spain) for providing R. leguminosarum bv. phaseoli GR-84 strain. We are grateful to Prof. P. Graham (Department of Soil, Water and Climate, Universitet of Minnesota, St. Paul, USA) for providing the strains (UMR1632, UMR1899, UMR6204, UMR6358, UMR6821, UMR7370, UMR7639) representing different species of Rhizobium and Mesorhizobium genera and Prof. W. Małek (Marie Curie-Skłodowska University, Lublin, Poland) for providing the isolates of B. japonicum and Mesorhizobium spp. We thank Mrs. Maria Małek for excellent technical assistance. This work was supported by grant from the Ministry of Science and Higher Education no. N N303 092234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Skorupska.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janczarek, M., Kalita, M. & Skorupska, A.M. New taxonomic markers for identification of Rhizobium leguminosarum and discrimination between closely related species. Arch Microbiol 191, 207–219 (2009). https://doi.org/10.1007/s00203-008-0447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0447-6

Keywords

Navigation